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METEORIX : mission universitaire dédiée a la détection et 2 la
caractérisation des météores

(a) Le logo (b) Un CubeSat

F1GURE — METEORIX : faire du traitement d'image depuis un CubeSat

Objectif du stage : Tester le déploiement de I'algorithme de traitement
d'image sur une carte congue pour |'embarqué
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La carte NVIDIA Jetson TX2

JETSON TX2 MODULE

- NVIDIA Pascal™ Architecture GPU
- 2 Denver 64-bit CPUs

- Quad-Core A57 Complex

- 8 GB L128 bit DDR4 Memory

Performances constructeur :

- 32 GB eMMC 5.1 Flash Storage

FIGURE — La carte NVIDIA Jetson TX2

Ceoeurs | Fréquence max | Cache L1 | Cache L2
Denver 2 2 2.5 GHz 192 kiB 2 MiB
ARM Cortex A57 4 2 GHz 80 kiB 2 MiB
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STREAM-TRIAD Benchmark qui évalue la bande passante mémoire
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FI1GURE — Bande passante mémoire selon le type de coeur

P Les plateaux correspondent aux caches des processeurs
» Pour les A57, L2 est partagé entre 2 cceurs
» Un parallélisme efficace nécessite une bonne localité de données.
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Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image

3 opérations : UpSampling, DownSampling et Stencil
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Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
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Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

Stencil

F1GURE — Fonctionnement de I'algorithme
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Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1=  1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

stencil_line(X[1], 1)

F1GURE — Application du stencil
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Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)
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L'application du stencil prend en moyenne 80% du temps de calcul. J
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Premiere version parallélisée de la phase asccendante

1 for(int level = nb_level - 1; level >= 0; level--) {
2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-1]);

=
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>

FIGURE — Fonctionnement de la version classic
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Améliorer la localité des données : changer |'ordr

1 for(int level = nb_level - 1; level >= 0; level—-) {

2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-11);

10 }

11

1 #pragma omp parallel for

2 for(int k = 0; k < nb_blocs){

3 for(int level = nb_level - 1; level >= 0; level--) {
4

5 for(int iter = 0; iter < nb_iter; iter++){

6 for(int i = blocStart(k); i < blocEnd(k); i++)
7 stencil_line(X[levell, i);

8

9 } if(level) {

10 for (int i = blocStart(k); i < blocEnd(k); i++)
11 upsample_line(X[levell, i, X[level-11);
12 }

13 }}
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Améliorer la localité des données : changer |'ordre de calcul

1 #pragma omp parallel for
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Améliorer la localité des données : changer |'ordre de calcul

1 #pragma omp parallel for
2 for(int k = 0; k < nb_blocs){
for(int level = nb_level - 1; level >= 0; level--) {
for(int iter = 0; iter < nb_iter; iter++){
for(int i = blocStart(k); i < blocEnd(k); i++)
stencil_line(X[levell, i);
} if(level) {
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Améliorer la localité des données : changer |'ordre de calcul

1
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#pragma omp parallel for
for(int k = 0; k < nb_blocs){
for(int level = nb_level - 1; level >= 0; level--) {
for(int iter = 0; iter < nb_iter; iter++){
for(int i = blocStart(k); i < blocEnd(k); i++)
stencil_line(X[levell, i);
} if(level) {
for (int i = blocStart(k); i < blocEnd(k); i++)
upsample_line(X[levell, i, X[level-1]);
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Principe des shadow-zones

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil
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Principe des shadow-zones
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Principe des shadow-zones
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Principe des shadow-zones

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil
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» Pour calculer un pixel sur une image il faut 9 pixels “a jour” sur
I'image précédente

» Pour calculer le résultat de plusieurs itérations de Stencil sur une
partie de I'image, il faut donc des calculs supplémentaires

shadow-zone Ensemble de calculs redondants, nécessaire a la correction de
la sortie de I'algorithme
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» En appliquant d'abord Stencil en profondeur sur les blocs, on

introduit une redondance dans le calcul
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FIGURE — Shadow-zone pour le calcul de 2 itérations de Stencil

» En appliquant d'abord Stencil en profondeur sur les blocs, on
introduit une redondance dans le calcul

» Plus le nombre d’opérations sur I'image est élevé, plus le calcul des
shadow-zones est coliteux

» Lorsqu'une grande image est divisée en peu de blocs, le calcul rajouté
est négligeable
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Comment découper le calcul ?
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FIGURE — Influence du nombre de blocs sur la performance

P> La performance de ord est équivalente a celle de classic si on prend en
compte les calculs en plus.

» En terme de GOp/s “utiles”, ord devient bien moins bon dés que I'on
a trop de blocs.
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Performance des algorithmes

Performance des versions ord et classic sur des cas usuels, en utilisant 6
blocs pour ord et 4 cceurs de la carte.

12 GOp/s 12 GOp/s

10 GOp/s 10 GOp/s

8GOp/s 8 GOp/s

6COp/s 6GOp/s
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— ad — od
00ps 1 r r r r r 00p/s 1 r T r r r
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n

n

(a) 6 niveaux, 6 itérations (x6) (b) 3 niveaux, 5, 10 puis 20 itérations
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Performance des algorithmes

Performance des versions ord et classic sur des cas usuels, en utilisant 6

blocs pour ord et 4 cceurs de la carte.

12 GOp/s
10 GOp/s
8GOp/s
6COp/s
4GOp/s
2GOp/s

00p/s

— classic
— ad

T T T T T T
0 1000 2000 3000 4000 5000
n

(a) 6 niveaux, 6 itérations (x6)

12 GOp/s

10 GOp/s
8 GOp/s
6GOp/s
4GOp/s

2GO0p/s —— classic

— od

00pfs

T T T T T T
0 1000 2000 3000 4000 5000
n
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FI1GURE — Performance selon la taille de I'image traitée

» Sur de grandes images, ord est souvent meilleur

» Sur de petites images, le calcul rajouté par ord est trop coliteux
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Pour quelles configurations la version ord est-elle optimale ?
» Grandes images
» Peu d'itérations de Stencil
» Beaucoup de niveaux
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P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix
> Selon les configurations du logiciel et le matériel embarqué, les
concepteurs du logiciel choisiront ord, classic ou bien une toute autre
approche

Optimisation de I'algorithme :
> ord parfois plus rapide que classic malgré plus de calculs
» Cela montre |'importance de garantir une bonne localité de données
» Pour 'opérateur DownSampling, la version ord est bien plus
performante car il n'y a pas besoin de shadow-zones

Pistes d'évolution :
> Prendre en compte |'aspect énergétique, enjeu clé des applications
pour les systemes embarqués
P Tester une autre approche de parallélisme : un pipeline temporel
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