Optimisation de I'exécution d'une application de flot

optique sur une architecture parallele hétérogene

Enrique GALVEZ

Encadrants:
Adrien CASSAGNE
Lionel LACASSAGNE
Alix MUNIER
Maxime MILLET

Ilp :::::::: 3
OE oK

2 =
Y

- —
ENS DE LYON

Enrique GALVEZ

1/19

Sommaire

@ Contexte
@ Motivations
@ La carte NVIDIA Jetson TX2
@ Bande passante mémoire
o Application de flot optique

© Optimisation de I'application
@ Opérations a accélérer
@ Premiere version parallélisée de la phase asccendante
@ Améliorer la localité des données : changer I'ordre de calcul
@ Principe des shadow-zones
@ Comment découper le calcul ?
@ Performance des algorithmes

© Conclusion

Enrique GALVEZ 2/19

Sommaire

@ Contexte
@ Motivations
@ La carte NVIDIA Jetson TX2
@ Bande passante mémoire
o Application de flot optique

Enrique GALVEZ 3/19

METEORIX : mission universitaire dédiée a la détection et 2 la
caractérisation des météores

Enrique GALVEZ 4/19

METEORIX : mission universitaire dédiée a la détection et 2 la
caractérisation des météores

(a) Le logo (b) Un CubeSat

F1GURE — METEORIX : faire du traitement d'image depuis un CubeSat

Enrique GALVEZ 4/19

METEORIX : mission universitaire dédiée a la détection et 2 la
caractérisation des météores

(a) Le logo (b) Un CubeSat

F1GURE — METEORIX : faire du traitement d'image depuis un CubeSat

Objectif du stage : Tester le déploiement de I'algorithme de traitement
d'image sur une carte congue pour |'embarqué

Enrique GALVEZ 4/19

La carte NVIDIA Jetson TX2

JETSON TX2 MODULE

- NVIDIA Pascal™ Architecture GPU
- 2 Denver 64-bit CPUs

- Quad-Core A57 Complex

- 8 GB L128 bit DDR4 Memory

Performances constructeur :

- 32 GB eMMC 5.1 Flash Storage

FIGURE — La carte NVIDIA Jetson TX2

Ceoeurs | Fréquence max | Cache L1 | Cache L2
Denver 2 2 2.5 GHz 192 kiB 2 MiB
ARM Cortex A57 4 2 GHz 80 kiB 2 MiB

Enrique GALVEZ

5/

19

Bande passante mémoire

STREAM-TRIAD Benchmark qui évalue la bande passante mémoire

Enrique GALVEZ 6/19

Bande passante mémoire

STREAM-TRIAD Benchmark qui évalue la bande passante mémoire

120 GB/s 120 GB/s
= 1 Denver
—
100 GB/s 100 GB/s 2/Denveg]
2 50CB/sd ERge
60 GB/s 4 ? 60 GB/s
< 10GB/s £ 10GB/s
20 GB/s | 2 GB/s
0B/s - - - - - 0B/s - - - - -
10 KB 100 KB 1 MB 10 MB 100 MB 10 KB 100 KB 1MB 10 MB 100 MB

mémoire

(a) Coeurs A57

mémoire

(b) Ceeurs Denver 2

FI1GURE — Bande passante mémoire selon le type de coeur

Enrique GALVEZ

Bande passante mémoire

STREAM-TRIAD Benchmark qui évalue la bande passante mémoire

120 GB/s 120 GB/s

= 1 Denver

100 GB/s 100 GB/s f— 2|Denvel
2 s0cB/sd ERge
60 GB/s 4 ? 60 GB/s
10 GB/s] £ 10GB/s
20 GB/s 2 GB/s

0B/s - - - - - 0B/s - - - - -
10 KB 100 KB 1 MB 10 MB 100 MB 10 KB 100 KB 1MB 10 MB 100 MB
mémoire mémoire
(a) Coeurs A57 (b) Coeurs Denver 2

FI1GURE — Bande passante mémoire selon le type de coeur

P Les plateaux correspondent aux caches des processeurs

Enrique GALVEZ 6/19

Bande passante mémoire

STREAM-TRIAD Benchmark qui évalue la bande passante mémoire

120 GB/s 120 GB/s

= 1 Denver

100 GB/s 100 GB/s f— 2|Denvel
ERge
§ 60 GB/s
£ 40GB/s
20 GB/s

0B/s - - - - - 0B/s - - - - -
10 KB 100 KB 1 MB 10 MB 100 MB 10 KB 100 KB 1MB 10 MB 100 MB
mémoire mémoire
(a) Coeurs A57 (b) Coeurs Denver 2

FI1GURE — Bande passante mémoire selon le type de coeur

P Les plateaux correspondent aux caches des processeurs
» Pour les A57, L2 est partagé entre 2 cceurs

Enrique GALVEZ 6/19

Bande passante mémoire

STREAM-TRIAD Benchmark qui évalue la bande passante mémoire

120 GB/s 120 GB/s

= 1 Denver

100 GB/s 100 GB/s f— 2|Denvel
ERge
§ 60 GB/s
£ 40GB/s
20 GB/s

0B/s - - - - - 0B/s - - - - -
10 KB 100 KB 1 MB 10 MB 100 MB 10 KB 100 KB 1MB 10 MB 100 MB
mémoire mémoire
(a) Coeurs A57 (b) Coeurs Denver 2

FI1GURE — Bande passante mémoire selon le type de coeur

P Les plateaux correspondent aux caches des processeurs
» Pour les A57, L2 est partagé entre 2 cceurs
» Un parallélisme efficace nécessite une bonne localité de données.

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image

Enrique GALVEZ 7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

Enrique GALVEZ 7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

DownSampling

F1GURE — Fonctionnement de I'algorithme

Enrique GALVEZ 7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image

3 opérations : UpSampling, DownSampling et Stencil

Enrique GALVEZ

=S

v
~

=

F1GURE — Fonctionnement de I'algorithme

DownSampling

7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image

3 opérations : UpSampling, DownSampling et Stencil

Enrique GALVEZ

B

XXX

R

F1GURE — Fonctionnement de I'algorithme

DownSampling

7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

Stencil
-

B

XXX

R

F1GURE — Fonctionnement de I'algorithme

Enrique GALVEZ 7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

N

upSampling

=

F1GURE — Fonctionnement de I'algorithme

Enrique GALVEZ 7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

v
~

=S

Stencil
—_—

=

F1GURE — Fonctionnement de I'algorithme

Enrique GALVEZ 7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

upSampIingl

F1GURE — Fonctionnement de I'algorithme

Enrique GALVEZ 7/19

Application de flot optique

PYRAMIDE D'IMAGE représentation multi-résolution d'une image
3 opérations : UpSampling, DownSampling et Stencil

Stencil

F1GURE — Fonctionnement de I'algorithme

Enrique GALVEZ 7/19

Sommaire

© Optimisation de I'application
@ Opérations a accélérer
@ Premiere version parallélisée de la phase asccendante
@ Améliorer la localité des données : changer I'ordre de calcul
@ Principe des shadow-zones
@ Comment découper le calcul ?
@ Performance des algorithmes

Enrique GALVEZ 8/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

stencil_line(X[1], 1)

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

LI e e | L e R e |
| | | | | | | | | | | | | |
r- -1 r - -1
_— o [o
: | stencil_line(X[1], 1) | |
[- o -
L _ L_ _
L) L)
| | | | | | | | | | | | | |
e S | | EE)) O [|

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

[e | L e R e |
| | | | | | | | | | | | | |
r- -1 r - -1
_— o [o
: | stencil_line(X[1], 1) | |
[- o -
L _ L_ _
L) L)
| | | | | | | | | | | | | |
e S | | EE)) O [|

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

[B T) L e R e |
| | | | | | | | | | | | | |
r- al r - -1
_— . [o
: | stencil_line(X[1], 1) | |
[S o -
L _ L_ _
L) L)
| | | | | | | | | | | | | |
e S | | EE)) O [|

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

L e R e R | L e R e |
| | | | | | | | | | | | | |
[-1 r - -1
| o [o
: | stencil_line(X[1], 2) | |
[- o -
o _ L_ _
L) L)
| | | | | | | | | | | | | |
e S | | EE)) O [|

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

L e R e R | L e R e |
| | | | | | | | | | | | | |
r- -1 r - -1
_— o [o
: | stencil_line(X[1], 2) | |
[- o -
L _ L_ _
L) L)
| | | | | | | | | | | | | |
e S | | EE)) O [|

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

L e R e R | L e R e |
| | | | | | | | | | | | | |
r- -1 r - -1
_— o [o
: | stencil_line(X[1], 2) | |
[- o -
L _ L_ _
L) L)
| | | | | | | | | | | | | |
e S | | EE)) O [|

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[j1= 1#X[i-11[j-1] + 2%X[i-11[j] + 1#X[i-1] [j+1]\
4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\
5 1xX [i+1] [j-1] + 2*%X[i+1][j] + 1xX[i+1][j+1]
6 }

L e R e R | L e R e |
| | | | | | | | | | | | | |
r- l r - -1
_— . [o
: | stencil_line(X[1], 2) | |
[] o -
L - L_ _
L) L)
| | | | | | | | | | | | | |
e S | | EE)) O [|

F1GURE — Application du stencil

Enrique GALVEZ 9/19

Opérations a accélérer

1 void stencil_line(uint32** X, int i){

2 for (int j = 0; j < w; j++)

3 X[i1[§1= 1#X[i-110j-1] + 2+X[i-11[3] + 1+X[i-1] [+11\

4 2%X[i 1[j-11 + 4#X[i 1[j] + 2*#X[i 1[j+11\

5 1#X[3+1] [§-1] + 2%X[i+1]1[§] + 1*X[i+1] [j+1]

6 }
\r 7\ | | | | - ~: :7 7\ | | | | - ~:
:77 . | stencil_line(X[1], 2) :77 77:
o R

F1GURE — Application du stencil
L'application du stencil prend en moyenne 80% du temps de calcul. J

Enrique GALVEZ 9/19

Premiere version parallélisée de la phase asccendante

1 for(int level = nb_level - 1; level >= 0; level--) {
2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-1]);

=
>< -) -

>

>

FIGURE — Fonctionnement de la version classic

Enrique GALVEZ 10/19

Premiere version parallélisée de la phase asccendante

1 for(int level = nb_level - 1; level >= 0; level--) {
2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-1]);

Stencil < thread 2a
—) - >

FIGURE — Fonctionnement de la version classic

Enrique GALVEZ 10/19

Premiere version parallélisée de la phase asccendante

1 for(int level = nb_level - 1; level >= 0; level--) {
2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-1]);

o
upSampling /><

\/

FIGURE — Fonctionnement de la version classic

Enrique GALVEZ 10/19

Premiere version parallélisée de la phase asccendante

1 for(int level = nb_level - 1; level >= 0; level--) {
2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-1]);

o
>
>

FIGURE — Fonctionnement de la version classic

upSampling

Enrique GALVEZ 10/19

Premiere version parallélisée de la phase asccendante

1 for(int level = nb_level - 1; level >= 0; level--) {
2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-1]);

Stencil
—_—

FIGURE — Fonctionnement de la version classic

Enrique GALVEZ 10/19

Premiere version parallélisée de la phase asccendante

1 for(int level = nb_level - 1; level >= 0; level--) {
2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-1]);

o

T~
< >
< >
Stencil / -
_— ’ >

FIGURE — Fonctionnement de la version classic

Enrique GALVEZ 10/19

Améliorer la localité des données : changer |'ordr

1 for(int level = nb_level - 1; level >= 0; level—-) {

2 for(int iter = 0; iter < nb_iter; iter++){

3 #pragma omp parallel for

4 for(int i = 0; i < h; i++)

5 stencil_line(X[levell, i);

6 } if(level) {

7 #pragma omp parallel for

8 for (int i = 0; i < h; i++)

9 upsample_line(X[levell, i, X[level-11);

10 }

11

1 #pragma omp parallel for

2 for(int k = 0; k < nb_blocs){

3 for(int level = nb_level - 1; level >= 0; level--) {
4

5 for(int iter = 0; iter < nb_iter; iter++){

6 for(int i = blocStart(k); i < blocEnd(k); i++)
7 stencil_line(X[levell, i);

8

9 } if(level) {

10 for (int i = blocStart(k); i < blocEnd(k); i++)
11 upsample_line(X[levell, i, X[level-11);
12 }

13 }}

Enrique GALVEZ 11/19

Améliorer la localité des données : changer |'ordre de calcul

1 #pragma omp parallel for
2 for(int k = 0; k < nb_blocs){

3 for(int level = nb_level - 1; level >= 0; level--) {

4 for(int iter = 0; iter < nb_iter; iter++){

5 for(int i = blocStart(k); i < blocEnd(k); i++)
6 stencil_line(X[levell, i);

7 } if(level) {

8 for (int i = blocStart(k); i < blocEnd(k); i++)
9 upsample_line(X[levell], i, X[level-1]);

10 }

11 3}

Stencil
> ‘

~
< -
< >
=
> - >
>

FIGURE — Fonctionnement de la version ord

Enrique GALVEZ 12/19

Améliorer la localité des données : changer |'ordre de calcul

1 #pragma omp parallel for
2 for(int k = 0; k < nb_blocs){

3 for(int level = nb_level - 1; level >= 0; level--) {

4 for(int iter = 0; iter < nb_iter; iter++){

5 for(int i = blocStart(k); i < blocEnd(k); i++)
6 stencil_line(X[levell, i);

7 } if(level) {

8 for (int i = blocStart(k); i < blocEnd(k); i++)
9 upsample_line(X[levell], i, X[level-1]);

10 }

11 3}

o
upSampling /><

FIGURE — Fonctionnement de la version ord

Enrique GALVEZ 12/19

Améliorer la localité des données : changer |'ordre de calcul

1 #pragma omp parallel for
2 for(int k = 0; k < nb_blocs){

3 for(int level = nb_level - 1; level >= 0; level--) {

4 for(int iter = 0; iter < nb_iter; iter++){

5 for(int i = blocStart(k); i < blocEnd(k); i++)
6 stencil_line(X[levell, i);

7 } if(level) {

8 for (int i = blocStart(k); i < blocEnd(k); i++)
9 upsample_line(X[levell], i, X[level-1]);

10 }

11 3}

Stencil
—_—

FIGURE — Fonctionnement de la version ord

Enrique GALVEZ 12/19

Améliorer la localité des données : changer |'ordre de calcul

1 #pragma omp parallel for
2 for(int k = 0; k < nb_blocs){

3 for(int level = nb_level - 1; level >= 0; level--) {

4 for(int iter = 0; iter < nb_iter; iter++){

5 for(int i = blocStart(k); i < blocEnd(k); i++)
6 stencil_line(X[levell, i);

7 } if(level) {

8 for (int i = blocStart(k); i < blocEnd(k); i++)
9 upsample_line(X[levell], i, X[level-1]);

10 }

11 3}

Stencil <

eney §>

P&
<>

FIGURE — Fonctionnement de la version ord

Enrique GALVEZ 12/19

Améliorer la localité des données : changer |'ordre de calcul

1 #pragma omp parallel for
2 for(int k = 0; k < nb_blocs){
for(int level = nb_level - 1; level >= 0; level--) {
for(int iter = 0; iter < nb_iter; iter++){
for(int i = blocStart(k); i < blocEnd(k); i++)
stencil_line(X[levell, i);
} if(level) {
for (int i = blocStart(k); i < blocEnd(k); i++)
upsample_line(X[levell, i, X[level-1]);

OO U W

=

3

s

upSampling

FIGURE — Fonctionnement de la version ord

Enrique GALVEZ 12/19

Améliorer la localité des données : changer |'ordre de calcul

1
2

© 00D Uk W

10
11

#pragma omp parallel for
for(int k = 0; k < nb_blocs){
for(int level = nb_level - 1; level >= 0; level--) {
for(int iter = 0; iter < nb_iter; iter++){
for(int i = blocStart(k); i < blocEnd(k); i++)
stencil_line(X[levell, i);
} if(level) {
for (int i = blocStart(k); i < blocEnd(k); i++)
upsample_line(X[levell, i, X[level-1]);

3

o

T~
< >
< >
Stencil / -
_— ’ >

FIGURE — Fonctionnement de la version ord

Enrique GALVEZ

12/19

Principe des shadow-zones

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil

Enrique GALVEZ 13/19

Principe des shadow-zones

I I I I
- -1 - -1
I I I I
- -1 s - -1
| | stencil | |
r -1 o -1
|] |]
[i (. -
| | | |
I I I I
L _1 Lo _1
I I I I I I I I I I I I I I I I I I
N B S R S| e B B B RO

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil

Enrique GALVEZ 13/19

Principe des shadow-zones

stencil stencil |

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil

Enrique GALVEZ 13/19

Principe des shadow-zones

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil

» Pour calculer un pixel sur une image il faut 9 pixels “a jour” sur
I'image précédente

Enrique GALVEZ 13/19

Principe des shadow-zones

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil

» Pour calculer un pixel sur une image il faut 9 pixels “a jour” sur
I'image précédente

» Pour calculer le résultat de plusieurs itérations de Stencil sur une
partie de I'image, il faut donc des calculs supplémentaires

Enrique GALVEZ 13/19

Principe des shadow-zones

F1GURE — Calcul d'un pixel aprés 2 itérations de Stencil

» Pour calculer un pixel sur une image il faut 9 pixels “a jour” sur
I'image précédente

» Pour calculer le résultat de plusieurs itérations de Stencil sur une
partie de I'image, il faut donc des calculs supplémentaires

shadow-zone Ensemble de calculs redondants, nécessaire a la correction de
la sortie de I'algorithme

Enrique GALVEZ 13/19

Principe des shadow-zones

[-
| |
[-
| |
- -1
| |
r- -
| |
T 1
| |
I [
L_ _J
Lo Lo [
I T T [|

FIGURE — Shadow-zone pour le calcul de 2 itérations de Stencil

Enrique GALVEZ 14 /19

Principe des shadow-zones

|
.

|

-

|

- -
|

-

|

I
4
I
4
I
il s
| stencil
o -1
|
I
]
I
|
I
4

o T
[T R N N R

FIGURE — Shadow-zone pour le calcul de 2 itérations de Stencil

Enrique GALVEZ

Principe des shadow-zones

I I I I I I
[- [- [4
R Y2 Y I I I I
2050080080000 00
I R AR AR [77v77v77v77v770 1 = -
\ROTEIIEIIN0N0E0 AR AR | |
20400400400800407 AVAVAYNYY
[-1 . [-1 N [-1
| | stencil | | stencil | |
r- -1 r- -1 r- -1
| | | | | |
I R AR A N AR A AN (e ~1
AR A AT | |
N R A AR A T -3 o -9
AR i i i i
I I
[T B B S | N B S R S| T B B B |

FIGURE — Shadow-zone pour le calcul de 2 itérations de Stencil

Enrique GALVEZ 1

Principe des shadow-zones

I I I I I I
- - - - [4
R Y2 Y I I I I
MYV VI _ - .
= IIRIIHIINI I 77077 1 = IV IIN I 77 1 I 1
\ROTEIIEIIN0N0E0 AR AR | |
20400400400800407 AVAVAYNYY
[-1 . I -1 N [-1
| | stencil | | stencil | |
r- -1 r -1 r- -1
| | | | | |
I R AR A N AR A AN (e ~1
AR A AT | |
N R A AR A r -3 o -9
AR i i i i
I I
[T B B S | N B S R S| T B B B |

FIGURE — Shadow-zone pour le calcul de 2 itérations de Stencil

» En appliquant d'abord Stencil en profondeur sur les blocs, on

introduit une redondance dans le calcul

Enrique GALVEZ

Principe des shadow-zones

I I I I I I
[- [4 [4
R Y2 Y I I I I
MYV VI _ - .
= IIRIIHIINI I 77077 1 = FIHIIYTIIY 77777777 1 I 1
\ROTEIIEIIN0N0E0 AR AR | |
20400400400800407 20000000000000007
[-1 . [il N [-1
| | stencil | | stencil | |
r- -1 r- al r- -1
| | | | | |
I R AR A N AR A AN (e ~1
AR A AT | |
N R A AR A T i o -9
AR i i i i
I I
[T B B S | N B S R S| T B B B |

FIGURE — Shadow-zone pour le calcul de 2 itérations de Stencil

» En appliquant d'abord Stencil en profondeur sur les blocs, on
introduit une redondance dans le calcul

» Plus le nombre d’opérations sur I'image est élevé, plus le calcul des
shadow-zones est coliteux

Enrique GALVEZ 14 /19

Principe des shadow-zones

I I I I I I
- 4 - 4 [4
R Y2 Y I I I I
MYV VI _ - .
= IIRIIHIINI I 77077 1 = IIYIIY 77 V77 1 I 1
\ROTEIIEIIN0N0E0 AR AR | |
20400400400800407 20000007 AW
[-1 . [il N [-1
| | stencil | | stencil | |
r- -1 r- al r- -1
| | | | | |
I R AR A N AR A AN (e ~1
AR A AT | |
N R A AR A T i o -9
AR i i i i
I I
[T B B S | N B S R S| T B B B |

FIGURE — Shadow-zone pour le calcul de 2 itérations de Stencil

» En appliquant d'abord Stencil en profondeur sur les blocs, on
introduit une redondance dans le calcul

» Plus le nombre d’opérations sur I'image est élevé, plus le calcul des
shadow-zones est coliteux

» Lorsqu'une grande image est divisée en peu de blocs, le calcul rajouté
est négligeable

Enrique GALVEZ 14 /19

Comment découper le calcul ?

Image de taille 2048, 4 cceurs utilisés

10 GOps | 10 GOp/s |
8 G()p/s] 8 GOp/s 7
6 GOp/s 1 6 GOp/s 1
4 GOp/s 4GOp/s
— classic — classic
2GOp/s T — ord 2GOp/s T — ord
==+ ord + shd === ord + shd
00p/s : : | | | | | | 00p/s 1 | | | | | |]
0 25 50 75 100 125 150 175 200 0 5 10 15 20 25 30 35 40
nombre de blocs nombre de blocs
(a) 6 niveaux, 6 itérations (Xx6) (b) 3 niveaux, 5, 10 puis 20 itérations

FIGURE — Influence du nombre de blocs sur la performance

Enrique GALVEZ

Comment découper le calcul ?

Image de taille 2048, 4 cceurs utilisés

10 GOps | 10 GOp/s |
8 G()p/s] 8 GOp/s 1
6 GOp/s 6GOp/s
4 GOp/s 4GOp/s 1
— classic — classic
2GOp/s T — ord 2GOp/s T — ord
==+ ord + shd === ord + shd
00p/s : : | | | | | | 00p/s 1 | | | | | |]
0 25 50 75 100 125 150 175 200 0 5 10 15 20 25 30 35 40
nombre de blocs nombre de blocs
(a) 6 niveaux, 6 itérations (Xx6) (b) 3 niveaux, 5, 10 puis 20 itérations

FIGURE — Influence du nombre de blocs sur la performance

P> La performance de ord est équivalente a celle de classic si on prend en
compte les calculs en plus.

Enrique GALVEZ 15/19

Comment découper le calcul ?

Image de taille 2048, 4 cceurs utilisés

10 GOps | 10 GOp/s |
8 GOp/s 1

6 GOp/s 1

4GOp/s 1

— classic

— classic

2GOp/s T — ord 2GOp/s T — ord
==+ ord + shd === ord + shd
00p/s : : : : ; ; ; : 00p/s 1 | | | | | |]
0 25 50 75 100 125 150 175 200 0 5 10 15 20 25 30 35 40
nombre de blocs nombre de blocs
(a) 6 niveaux, 6 itérations (Xx6) (b) 3 niveaux, 5, 10 puis 20 itérations

FIGURE — Influence du nombre de blocs sur la performance

P> La performance de ord est équivalente a celle de classic si on prend en
compte les calculs en plus.

» En terme de GOp/s “utiles”, ord devient bien moins bon dés que I'on
a trop de blocs.

Enrique GALVEZ 15/19

Performance des algorithmes

Performance des versions ord et classic sur des cas usuels, en utilisant 6
blocs pour ord et 4 cceurs de la carte.

12 GOp/s 12 GOp/s

10 GOp/s 10 GOp/s

8GOp/s 8 GOp/s

6COp/s 6GOp/s

4GOp/s 4GOp/s

2GOp/s — classic 2GOp/s — dlassic

— ad — od
00ps 1 r r r r r 00p/s 1 r T r r r
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
n

n

(a) 6 niveaux, 6 itérations (x6) (b) 3 niveaux, 5, 10 puis 20 itérations

FI1GURE — Performance selon la taille de I'image traitée

Enrique GALVEZ 16 /19

Performance des algorithmes

Performance des versions ord et classic sur des cas usuels, en utilisant 6
blocs pour ord et 4 cceurs de la carte.

12 GOp/s 12 GOp/s

10 GOp/s 10 GOp/s

8GOp/s 8 GOp/s

6COp/s 6GOp/s

4GOp/s 4GOp/s

2GOp/s — classic 2GOp/s — dlassic

— ad — od
00ps 1 r r r r r 00p/s 1 r T r r r
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
n

n

(a) 6 niveaux, 6 itérations (x6) (b) 3 niveaux, 5, 10 puis 20 itérations

FI1GURE — Performance selon la taille de I'image traitée

» Sur de grandes images, ord est souvent meilleur

Enrique GALVEZ 16 /19

Performance des algorithmes

Performance des versions ord et classic sur des cas usuels, en utilisant 6

blocs pour ord et 4 cceurs de la carte.

12 GOp/s
10 GOp/s
8GOp/s
6COp/s
4GOp/s
2GOp/s

00p/s

— classic
— ad

T T T T T T
0 1000 2000 3000 4000 5000
n

(a) 6 niveaux, 6 itérations (x6)

12 GOp/s

10 GOp/s
8 GOp/s
6GOp/s
4GOp/s

2GO0p/s —— classic

— od

00pfs

T T T T T T
0 1000 2000 3000 4000 5000
n

(b) 3 niveaux, 5, 10 puis 20 itérations

FI1GURE — Performance selon la taille de I'image traitée

» Sur de grandes images, ord est souvent meilleur

» Sur de petites images, le calcul rajouté par ord est trop coliteux

Enrique GALVEZ 16 /19

Performance des algorithmes

Pour quelles configurations la version ord est-elle optimale ?

Enrique GALVEZ 17 /19

Performance des algorithmes

Pour quelles configurations la version ord est-elle optimale ?
» Grandes images

Enrique GALVEZ 17 /19

Performance des algorithmes

Pour quelles configurations la version ord est-elle optimale ?
» Grandes images
> Peu d'itérations de Stencil

Enrique GALVEZ 17 /19

Performance des algorithmes

Pour quelles configurations la version ord est-elle optimale ?
» Grandes images
» Peu d'itérations de Stencil
» Beaucoup de niveaux

Enrique GALVEZ 17 /19

Performance des algorithmes

Pour quelles configurations la version ord est-elle optimale ?
» Grandes images
» Peu d'itérations de Stencil
» Beaucoup de niveaux

14 GOpjs 14GOp/s
— dlassic — classic

12G0p/s T — ord 12G0p/s T — ord

10 GOp/s / 10 GOp/s

8 GOp/s 8 GOp/s

6GOp/s /ﬂ, 6GOp/s

4GOp/s 4GOp/s

2GOp/s 2GOp/s

00ps L+ r r r r T r r . 00p/s L r r r r r
2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000

(a) 6 niveaux, 6 itérations par niveau (b) 3 niveaux, 1 itération par niveau

FIGURE — Performance selon la taille de I'image traitée

Enrique GALVEZ 17 /19

Sommaire

© Conclusion

Enrique GALVEZ 18/19

Conclusion

Objectifs de mon travail :
P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix

Enrique GALVEZ 19/19

Conclusion

Objectifs de mon travail :
P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix
> Selon les configurations du logiciel et le matériel embarqué, les
concepteurs du logiciel choisiront ord, classic ou bien une toute autre
approche

Enrique GALVEZ 19/19

Conclusion

Objectifs de mon travail :
P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix
> Selon les configurations du logiciel et le matériel embarqué, les
concepteurs du logiciel choisiront ord, classic ou bien une toute autre
approche

Optimisation de I'algorithme :
> ord parfois plus rapide que classic malgré plus de calculs

Enrique GALVEZ 19/19

Conclusion

Objectifs de mon travail :
P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix
> Selon les configurations du logiciel et le matériel embarqué, les
concepteurs du logiciel choisiront ord, classic ou bien une toute autre
approche

Optimisation de I'algorithme :
> ord parfois plus rapide que classic malgré plus de calculs
» Cela montre I'importance de garantir une bonne localité de données

Enrique GALVEZ 19/19

Conclusion

Objectifs de mon travail :
P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix
> Selon les configurations du logiciel et le matériel embarqué, les
concepteurs du logiciel choisiront ord, classic ou bien une toute autre
approche

Optimisation de I'algorithme :
> ord parfois plus rapide que classic malgré plus de calculs
» Cela montre I'importance de garantir une bonne localité de données
» Pour 'opérateur DownSampling, la version ord est bien plus
performante car il n'y a pas besoin de shadow-zones

Enrique GALVEZ 19/19

Conclusion

Objectifs de mon travail :
P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix
> Selon les configurations du logiciel et le matériel embarqué, les
concepteurs du logiciel choisiront ord, classic ou bien une toute autre
approche

Optimisation de I'algorithme :
> ord parfois plus rapide que classic malgré plus de calculs
» Cela montre |'importance de garantir une bonne localité de données
» Pour 'opérateur DownSampling, la version ord est bien plus
performante car il n'y a pas besoin de shadow-zones

Pistes d'évolution :

> Prendre en compte |'aspect énergétique, enjeu clé des applications
pour les systemes embarqués

Enrique GALVEZ 19/19

Conclusion

Objectifs de mon travail :
P ord et classic sont deux stratégies de déploiement de |'algorithme qui
doit étre embarqué sur Meteorix
> Selon les configurations du logiciel et le matériel embarqué, les
concepteurs du logiciel choisiront ord, classic ou bien une toute autre
approche

Optimisation de I'algorithme :
> ord parfois plus rapide que classic malgré plus de calculs
» Cela montre |'importance de garantir une bonne localité de données
» Pour 'opérateur DownSampling, la version ord est bien plus
performante car il n'y a pas besoin de shadow-zones

Pistes d'évolution :
> Prendre en compte |'aspect énergétique, enjeu clé des applications
pour les systemes embarqués
P Tester une autre approche de parallélisme : un pipeline temporel

	Contexte
	Motivations
	La carte NVIDIA Jetson TX2
	Bande passante mémoire
	Application de flot optique

	Optimisation de l'application
	Opérations à accélérer
	Première version parallélisée de la phase asccendante
	Améliorer la localité des données: changer l'ordre de calcul
	Principe des shadow-zones
	Comment découper le calcul ?
	Performance des algorithmes

	Conclusion

