
Vectorization of deep learning kernels

Enrique GALVEZ

Under supervision of:
Marc CASAS

Alexandre DE LIMAS SANTANA

Barcelona Supercomputing Center

May - July 2023

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 1 / 26



Overview

1. Motivations and context

2. Methodology
Target architecture
Programming model
Execution platform

3. Vectorized kernels
The ReLU operation
The pooling primitive
The batch normalization primitive

4. Conclusion

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 2 / 26



Overview

1. Motivations and context

2. Methodology
Target architecture
Programming model
Execution platform

3. Vectorized kernels
The ReLU operation
The pooling primitive
The batch normalization primitive

4. Conclusion

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 3 / 26



Motivations and context

Deep learning algorithms:

▶ Became essential in most AI tasks

▶ Costly in terms of computation

▶ Example case for HPC research

Vector architectures history:

Intel MMX Fixed vector length of 64bits

AVX/AVX2 Fixed vector length of 256 bits

AVX512 Fixed vector length of 512 bits

SVE Scalable vector length between 128 and 2048 bits

EPI RV64V Scalable vector length up to 16384 bits (target of this work)

Goal:
How to program efficient deep learning algorithms on architectures with long vector length ?

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 4 / 26



Overview

1. Motivations and context

2. Methodology
Target architecture
Programming model
Execution platform

3. Vectorized kernels
The ReLU operation
The pooling primitive
The batch normalization primitive

4. Conclusion

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 5 / 26



Target architecture

L2 cache

Instruction 1 PU

Instruction 2

...

PU PU PU PU

PU PU PU PU PU

Vector registers

Figure: EPI RiscV Vector processor

EPI RiscV Vector processor:

▶ Implements SIMD parallelism across ”vectors” of
data

▶ Scalable vector length up to 16384 bits
(512 × float 32)

▶ L2 Cache feeds the vector registers

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 6 / 26



Programming model

EPI’s RISC-V Vector Extension Intrinsic:

▶ set vector length

▶ SIMD arithmetic operations

▶ SIMD relational operations

▶ memory accesses (loads/stores)

▶ masked operations

▶ ...

Key points that appeared to influence the performances of vector algorithms:

▶ Data locality Decrease memory latency (contLoads faster than idxLoads)

▶ Vector length utilization Use as much processing units as possible

▶ Register-level data reuse Improve memory accesses to decrease required memory bandwidth

▶ Code generation Helps reducing the number of instructions executed in PUs

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 7 / 26



Execution platform

...

HPC lib: OneDNN

CPU GPU RV64V

Figure: OneDNN library

How a deep learning application works ?

▶ Creates a model using a high level library (Tensorflow, Pytorch...)

▶ The high level library requests computations to a HPC library such
as OneDNN

▶ OneDNN selects an implementation depending on architecture and
operation parameters

Execution environment:

▶ Real RV64V machine: FPGAs (in development)

▶ MUSA simulator for features still unimplemented in the FPGAs

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 8 / 26



Overview

1. Motivations and context

2. Methodology
Target architecture
Programming model
Execution platform

3. Vectorized kernels
The ReLU operation
The pooling primitive
The batch normalization primitive

4. Conclusion

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 9 / 26



The ReLU operation

The formula for forward ReLU operation is:

d =

{
s if s > 0
α× s if s ≤ 0

Where:

▶ s is the source pixel

▶ d is the destination pixel

▶ α is a fixed hyperparameter

Scalar code:

for (i = 0 to MB * H * W * C)
out[i] = (in[i] > 0) ? in[i] : (in[i] * α);

Vectorized code:

loop_size = MB * H * W * C;
int gvl = 0;

for (i = 0; i < loop_size; i += gvl) {
// compute size of vectors
gvl = vsetvl(loop_size-i);
// load vectors
vf32 vin = vload(&(in[i]), gvl);
vf32 vzeros = vbroadcast(0.0f, gvl);
vf32 valpha = vbroadcast(alpha, gvl);
// test positivity -> pos is a mask
vi1 pos = vmfge(vin, vzeros, gvl);
// mul masked by pos
vin = vfmul_mask(vin, vin, valpha, pos, gvl);
// store in memory
vstore(&(out[i]), vin, gvl);

}

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 10 / 26



The ReLU operation

Experiment:

▶ Test cases taken from real
networks: ResNet and Yolo

Observations:

▶ Code vectorization brings up to
90× speedup

▶ The size of the tensor has a high
impact over the performance

▶ Peak performance is obtained for
tensors of size around 192kB

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 11 / 26



The pooling primitive

fwd pooling

kernel

src

dst

stride

H

W

H

W

C

C

Figure: The pooling operation

Algorithm:

▶ Each output pixel is computed as
the average or max of the input
pixels among the kernel

Remarks:

▶ Involves a lot of memory accesses

▶ The speed of memory accesses will
be decisive in the speed of the
vectorized algorithm

Note: In order to access memory in the most optimal way, it is important to understand
memory formats.

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 12 / 26



The pooling primitive

memory

NCHW: C0,H0,W C0,H1,W C0,H2,W C1,H0,W C1,H1,W C1,H2,W

W

H

memory

NHWC: H0,W0,C H0,W1,C H0,W2,C H1,W0,C H1,W1,C H1,W2,C

C

W

...

...

Figure: The 2 most common memory formats

What is the memory format of a tensor ?

▶ It is the way the tensor (multidimensional object) is stored in memory (linear)

▶ It specifies which dimension is stored contiguously and which aren’t

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 13 / 26



The pooling primitive

src

dst

H

W

H

W

C

C

vectorfwd pooling

Figure: FWD pooling: IdxLoad algorithm

▶ Works for any memory format

▶ Loads aren’t contiguous

▶ Need to compute kernel indices for each
output pixel

fwd pooling

src

dst

H

W

H

W

C
C

vector

Figure: FWD pooling: ContLoad algorithm

▶ Works only for NHWC

▶ Since C is inner-most, loads can be contiguous

▶ Kernel indices can be computed once and
used among C dimension

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 14 / 26



The pooling primitive

▶ Cycles obtained with MUSA simulator

▶ idxLoad requires more cycles → slower

▶ Difference due to the locality of contiguous
memory accesses

▶ Speedups depends on the size of vectorized
dimension

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 15 / 26



The batch normalization primitive

Batch normalization formula:

dst(n, c , h,w) = γ(c)· src(n, c , h,w)− µ(c)√
σ2(c) + ε

+β(c)

▶ Almost an eltwise primitive

▶ Difference with eltwise: arrays over C

naive algorithm:

▶ Works for NHWC format

▶ Vectorize among C

▶ use contLoads for the arrays over C

FWD bnorm naive for NHWC (using contLoads):

for(n,h,w){

for(c=0; c<C; c+=gvl){ // vectorized

gvl = vsetvl(C - c);

v_gamma = contLoad(gamma[c]);

v_mu = contLoad(mu[c]);

v_sigma2 = contLoad(sigma2[c]);

v_beta = contLoad(beta[c]);

v_eps = vbroadcast(epsilon);

v_src = contLoad(src);

v_dst = v_gamma * (v_src - v_mu)

/ sqrt(v_sigma2 + v_eps) + beta;

contStore(v_dst);

}

}

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 16 / 26



The batch normalization primitive

...

C

N
xH

xW

round buffer

▶ Allow contLoads of channels values

▶ Maximize the use of vector length

▶ Optimization for naive targetting the cases
where IC is small

FWD bnorm roundBuffer for NHWC:

buff_size = C + maxvl - gcd(C, maxvl);

extendBuffersTo(buff_size);

for(i=0, i < N*C*H*W, i+=gvl){ // vectorized

gvl = vsetvl(N*C*H*W - i);

v_eps = vbroadcast(epsilon);

// load contiguously the arrays

v_gamma = contLoad(buff_gamma[i%C]);

v_mu = contLoad(buff_mu[i%C]);

v_sigma2 = contLoad(buff_sigma2[i%C]);

v_beta = contLoad(buff_beta[i%C]);

// compute dst

v_src = contLoad(src[i]);

v_dst = v_gamma * (v_src - v_mu)

/ sqrt(v_sigma2 + v_eps) + beta;

contStore(v_dst[i]);

}

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 17 / 26



The batch normalization primitive

Experiment:

▶ Realized on a RV64V machine (FPGA)

▶ Test set from benchDNN including real
network sizes (ResNet, GoogLeNet, ...)

Conclusions:

▶ Roundbuffer is way better than naive for
small IC

▶ For high IC, this optimization is useless

▶ Are there other optimizations for high IC ?

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 18 / 26



The batch normalization primitive

swapLoops algorithm for FWD batch normalization:

Algorithm:

▶ Works for NHWC format

▶ Is an optimization for naive

▶ Loops are reordered

It improves data locality:

▶ Statistics loads are moved outside the
inner-most loop

▶ Improved register-level data reuse

for(c=0; c<C; c+=gvl){ // vectorized

gvl = vsetvl(C - c);

v_gamma = contLoad(gamma[c]);

v_mu = contLoad(mu[c]);

v_sigma2 = contLoad(sigma2[c]);

v_beta = contLoad(beta[c]);

v_eps = vbroadcast(epsilon);

for(n,h,w){

v_src = contLoad(src);

v_dst = v_gamma * (v_src - v_mu)

/ sqrt(v_sigma2 + v_eps) + beta;

contStore(v_dst);

}

}

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 19 / 26



The batch normalization primitive

Experiment:

▶ Realized on a RV64V machine (FPGA)

▶ Test set from benchDNN including real
network sizes (ResNet, GoogLeNet, ...)

Conclusions:

▶ swapLoops is significantly better than
roundBuffer for IC > 128

▶ For these cases, improving data locality is
more important than using full vector length

▶ swapLoops can still be improved

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 20 / 26



The batch normalization primitive

Original swapLoop algorithm:

v_sqrt_var = vsqrt(v_sigma2 + v_eps);

for(n,h,w){

v_src = contLoad(src);

v_dst = v_gamma * (v_src - v_mu)

/ sqrt(v_sigma2 + v_eps) + beta;

// 4 instructions

// v_dst = vfsub(v_src, v_mu)

// v_dst = vfmul(v_dst, v_gamma)

// v_dst = vfdiv(v_dst, v_sqrt_var)

// v_dst = vfadd(v_dst, v_beta)

contStore(v_dst);

}

▶ 4 instructions in the nhw loop

swapLoops+aritOpt algorithm:

v_gam_sqrt_var = gamma / vsqrt(v_sigma2 + v_eps);

v_mu_beta = v_mu * v_gam_sqrt_var - v_beta

for(n,h,w){

v_src = contLoad(src);

v_dst = v_gam_sqrt_var * v_src - v_mu_beta;

// 1 instruction

// v_dst = vfmsub(v_src, v_gam_sqrt_var,

// v_mu_beta)

contStore(v_dst);

}

▶ Uses expanded arithmetic expression

▶ Only 1 operation remains inside nhw loop.

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 21 / 26



The batch normalization primitive

Loop unrolling:

▶ Optimization at the compilation level

▶ Allow overlapping between arithmetic
operations and memory accesses

Non unrolled algorithm:

for(i=0; i < N*H*W; ++i){

compute(v_src);

// v_src = contLoad(src)

// v_src = v_gam_sqrt_var * v_src - v_mu_beta

store(v_src);

// contStore(v_src)

}

Unroll4 algorithm:

for (i=0; i < N*H*W/4; ++i) {

compute(v_src0);

compute(v_src1);

compute(v_src2);

compute(v_src3);

store(v_src0);

store(v_src1);

store(v_src2);

store(v_src3);

}

i *= 4;

for (; i < N*H*W; ++i) {

compute(v_src0);

store(v_src0);

}

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 22 / 26



The batch normalization primitive

Experiments:

▶ Realized on RV64V machines (FPGA)

▶ Test set from benchDNN

AO arithmetic optimization

UX UnrollX algorithm

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 23 / 26



Overview

1. Motivations and context

2. Methodology
Target architecture
Programming model
Execution platform

3. Vectorized kernels
The ReLU operation
The pooling primitive
The batch normalization primitive

4. Conclusion

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 24 / 26



Conclusion

To program efficient algorithms on vector machines, it is important to consider:

The memory format used

▶ Defines the algorithm memory access pattern

▶ Can allow contiguous loads, faster than
gathers

Maximizing the use of vector length

▶ Maximize hardware use during the
computations

▶ Not useful for any problem shape

Keeping a good data locality

▶ Decrease the number of memory accesses

▶ Very important for memory-bounded
algorithms

Loop unrolling and other optimization at
compilation level:

▶ Can bring some additional speedups when the
high-level code is already in its best version

▶ Can be difficult to implement

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 25 / 26



References

F. Minervini, O. Palomar, O. Unsal, E. Reggiani, J. Quiroga, J. Marimon, C. Rojas, R. Figueras, A. Ruiz, A. González, J. Mendoza, I. Vargas Valdivieso, C. Hernández Calderón,

J. Cabre, L. Khoirunisya, M. Bouhali, J. Pavon, F. Moll, M. Olivieri, and A. Cristal, “Vitruvius+: An area-efficient risc-v decoupled vector coprocessor for high performance computing
applications,” ACM Transactions on Architecture and Code Optimization, vol. 20, 12 2022.

A. d. L. Santana, A. Armejach, and M. Casas, “Efficient direct convolution using long simd instructions,” in Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles

and Practice of Parallel Programming, PPoPP ’23, (New York, NY, USA), p. 342–353, Association for Computing Machinery, 2023.

C. Rodrigues, A. Phaosawasdi, and P. Wu, “Simdization of small tensor multiplication kernels for wide simd vector processors,” in Proceedings of the 2018 4th Workshop on

Programming Models for SIMD/Vector Processing, WPMVP’18, (New York, NY, USA), Association for Computing Machinery, 2018.

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol. abs/1512.03385, 2015.

Enrique GALVEZ (Barcelona Supercomputing Center) Vectorization of deep learning kernels May - July 2023 26 / 26


	Motivations and context
	Methodology
	Target architecture
	Programming model
	Execution platform

	Vectorized kernels
	The ReLU operation
	The pooling primitive
	The batch normalization primitive

	Conclusion

