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Motivations and context

Deep learning algorithms:
> Became essential in most Al tasks
» Costly in terms of computation
» Example case for HPC research

Vector architectures history:
Intel MMX Fixed vector length of 64bits
AVX/AVX2 Fixed vector length of 256 bits
AVX512 Fixed vector length of 512 bits
SVE Scalable vector length between 128 and 2048 bits
EPI RV64V Scalable vector length up to 16384 bits (target of this work)

Goal:
How to program efficient deep learning algorithms on architectures with long vector length 7
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Target architecture

L2 cache
\’ \’ \’ \’ \’ EPI RiscV Vector processor:

Vector registers . " "
€ » Implements SIMD parallelism across "vectors” of

v v v v v data

PU » PU » PU » PU » PU .
» Scalable vector length up to 16384 bits

vy (512 x float 32)

PU » PU » PU » PU » PU

(2N T A A

» L2 Cache feeds the vector registers

Figure: EPI RiscV Vector processor
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Programming model

EPI's RISC-V Vector Extension Intrinsic:

> set vector length > memory accesses (loads/stores)
» SIMD arithmetic operations » masked operations
» SIMD relational operations > .

Key points that appeared to influence the performances of vector algorithms:
» Data locality Decrease memory latency (contLoads faster than idxLoads)
» Vector length utilization Use as much processing units as possible
> Register-level data reuse Improve memory accesses to decrease required memory bandwidth
» Code generation Helps reducing the number of instructions executed in PUs
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Execution platform

‘ . How a deep learning application works ?
1F O > Creates a model using a high level library (Tensorflow, Pytorch...)
HPC lib: OneDNN » The high level library requests computations to a HPC library such
as OneDNN
cru cPu Rvesv » OneDNN selects an implementation depending on architecture and

Figure: OneDNN library operation parameters

Execution environment:
> Real RV64V machine: FPGAs (in development)
» MUSA simulator for features still unimplemented in the FPGAs
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3. Vectorized kernels
@ The RelLU operation
@ The pooling primitive
@ The batch normalization primitive
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The RelLU operation

The formula for forward ReLU operation is:

d_15 if s>0
Tl axs ifs<0

Where:
» s is the source pixel
» d is the destination pixel

P> « is a fixed hyperparameter

Scalar code:

for (i = 0 to MB * H * W * C)
out[i] = (in[i] > 0) ? in[i] : (in[i] * a);

Vectorized code:

loop_size = MB * H * W * C;

int gvl = O;

for (i = 0; i < loop_size; i += gvl) {
// compute size of vectors
gvl = vsetvl(loop_size-i);
// load vectors
vE£32 vin = vload(&(in[il), gvl);
vi32 vzeros = vbroadcast(0.0f, gvl);
vf32 valpha = vbroadcast(alpha, gvl);
// test positivity -> pos is a mask
vil pos = vmfge(vin, vzeros, gvl);
// mul masked by pos
vin = vfmul_mask(vin, vin, valpha, pos, gvl);
// store in memory
vstore(&(out[i]), vin, gvl);
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The RelLU operation

RV64V vector ReLU performance
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pooling primitive
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Figure: The pooling operation

Algorithm:

» Each output pixel is computed as
the average or max of the input
pixels among the kernel

Remarks:
» Involves a lot of memory accesses

» The speed of memory accesses will
be decisive in the speed of the
vectorized algorithm

Note: In order to access memory in the most optimal way, it is important to understand

memory formats.
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The pooling primitive

w memory
NCHW: |I Co,Ho,W ©CoHLW CO,H2,W C1,Ho,W C1H1W C1,H2,W
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C memory
NHWC: |I HO,W0,C " Howi,C Ho,W2,C H1,Wo0,C H1,W1,C H1,W2,C
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Figure: The 2 most common memory formats

What is the memory format of a tensor ?
> |t is the way the tensor (multidimensional object) is stored in memory (linear)

> |t specifies which dimension is stored contiguously and which aren't
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pooling primitive

CArTTTTT o e o c
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src src
Figure: FWD pooling: IdxLoad algorithm Figure: FWD pooling: ContLoad algorithm
» Works for any memory format » Works only for NHWC
» Loads aren't contiguous » Since C is inner-most, loads can be contiguous
» Need to compute kernel indices for each » Kernel indices can be computed once and
output pixel used among C dimension
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The pooling primitive

number of cycles

> Cycles obtained with MUSA simulator

~N
L 13
‘e

RV64V vector forward pooling cycles

® idxLoad
contlLoad ,

cases from real networks ordered by increasing ic

2048

1024

number of channels

512

96

» idxLoad requires more cycles — slower

» Difference due to the locality of contiguous

memory accesses
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» Speedups depends on the size of vectorized

speedup wrt scalar implementation

dimension

RV64V vector forward pooling performance
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® max-pooling
® avg-pooling
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cases from real networks ordered by increasing ic
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batch normalization primitive

o FWD bnorm naive for NHWC (using contlLoads):
Batch normalization formula:

.src(n, ¢, h,w) — u(c) +8(0) for(n,h,w){

dst(n, c, h, W) = V(C) 2(C) T ¢ for(c=0; c<C; c+=gvl){ // vectorized
g < gvl = vsetvl(C - c);
v_gamma = contLoad(gammal[c]);
v_mu = contLoad(mulc]);
» Almost an eltwise primitive v_sigma2 = contLoad(sigma2[c]);
v_beta = contLoad(betalc]);

» Difference with eltwise: arrays over C

v_eps = vbroadcast(epsilon);
v_src = contLoad(src);

naive algorithm: v_dst = v_gamma * (v_src - v_mu)
> Works for NHWC format ! SRR Eee] < A < Bees
contStore(v_dst);
» Vectorize among C }

» use contlLoads for the arrays over C
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The batch normalization primitive

FWD bnorm roundBuffer for NHWC:

C
e 2—___~ N\ buff_size = C + maxvl - gcd(C, maxvl);
== == - >— - - 7 ,’ N \\ extendBuffersTo (buff_size);
I N I Y I N
> N > ,’ ! \ for(i=0, i < N*C*H*W, i+=gvl){ // vectorized
= X : ] gvl = vsetvl (N*C+H¥W - i);
f \ ! v_eps = vbroadcast(epsilon);
X \ /
= LSRN }/ // load contiguously the arrays
AN . v_gamma = contLoad(buff_gammal[iYC]);
S o _——— v_mu = contLoad(buff_mul[i%C]);
v_sigma2 = contLoad(buff_sigma2[i’Cl);
round buffer v_beta = contLoad(buff_betali’C]);

// compute dst

v_src = contLoad(src[il);

v_dst = v_gamma * (v_src - v_mu)

> Maximize the use of vector length / sqrt(v_sigma2 + v_eps) + beta;
contStore(v_dst[i]);

» Allow contlLoads of channels values

» Optimization for naive targetting the cases }
where IC is small
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The batch normalization primitive

RV64V vector forward batch normalization
20 2560
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:.° e 7% small IC
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cases from real networks ordered by increasing ic
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e batch normalization primitive

swapLloops algorithm for FWD batch normalization:

Algorithm: for(c=0; c<C; c+=gvl){ // vectorized
gvl = vsetvl(C - c);
» Works for NHWC format v_gamma = contLoad(gammalc]);
> Is an optimization for naive I = contLoad(mulcl);
v_sigma2 = contLoad(sigma2[c]);
» Loops are reordered v_beta = contLoad(betalcl);
v_eps = vbroadcast(epsilon);
. . for(n,h,w){
It improves data locality: v_src = contLoad(src);

v_dst = v_gamma * (v_src - v_mu)
. / sqrt(v_sigma2 + v_eps) + beta;
inner-most loop contStore(v_dst) ;

> Improved register-level data reuse }}

> Statistics loads are moved outside the
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batch normalization primitive

RV64V vector forward batch normalization
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The batch normalization primitive

Original swapLoop algorithm: swaplLoops+aritOpt algorithm:
v_sqrt_var = vsqrt(v_sigma2 + v_eps); v_gam_sqrt_var = gamma / vsqrt(v_sigma2 + v_eps);
for(n,h,w){ v_mu_beta = v_mu * v_gam_sqrt_var - v_beta
v_src = contLoad(src); for(n,h,w){
v_dst = v_gamma * (v_src - v_mu) v_src = contLoad(src);
/ sqrt(v_sigma2 + v_eps) + beta; v_dst = v_gam_sqrt_var * v_src - v_mu_beta;
// 4 instructions // 1 instruction
// v_dst = vfsub(v_src, v_mu) // v_dst = vfmsub(v_src, v_gam_sqrt_var,
// v_dst = vfmul (v_dst, v_gamma) // v_mu_beta)
// v_dst = vfdiv(v_dst, v_sqrt_var) contStore (v_dst) ;
// v_dst = vfadd(v_dst, v_beta) }
contStore(v_dst);
}
» Uses expanded arithmetic expression
> 4 instructions in the nhw loop > Only 1 operation remains inside nhw loop.
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The batch normalization primitive

Loop unrolling: Unroll4 algorithm:

» Optimization at the compilation level
i=0; i *H* ; ++i
> Allow overlapping between arithmetic for é;mgat:(i_grgo‘;]{Al’ Dt
operations and memory accesses compute (v_srcl) ;
compute (v_src2) ;
compute (v_src3) ;
Non unrolled algorithm: store(v_src0);
store(v_srcl);
store(v_src2);
store(v_src3);

for(i=0; i < NxH*W; ++i){

compute (v_src) ; }
// v_src = contLoad(src) i ox= 4;
// v_src = v_gam_sqrt_var * v_src - v_mu_beta for (; i < NxH*W; ++i) {

store(v_src);

compute (v_src0) ;
// contStore(v_src)

store(v_src0);
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The batch normalization primitive

RV64V vector forward batch normalization
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® swaploops —-———ic 70 Average speedup of optimized FWD batch normalization
© swaploops+AO oo %0 2816 =
swaplLoops+AO+U4 ° b 3
100 + L

< 00 ® swaplLoops+AO+U8 Yo & o o 2560 é 60
o L) ° ° | s

2 1) v, 0, [2304 i
S 80 F 2048 s
5 H E

° L1792 € g 40
E 25 g
5 60 L1536 5 a

e ° £30
2 L1280 2 5
£ € ©

z 3 3 20
2 40 b 1024 € 4
H

S

@ a

g 768 310
& b
204 r512 &

0

. 256 0°QL'
ol =z - 0 é,,Q"
cases from real networks ordered by increasing ic 9
Experiments:

AO arithmetic optimization

> Realized on RV64V machines (FPGA)
UX UnrollX algorithm

» Test set from benchDNN
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Conclusion

To program efficient algorithms on vector machines, it is important to consider:

The memory format used Keeping a good data locality

. . » Decrease the number of memory accesses
» Defines the algorithm memory access pattern Y

» Very important for memory-bounded

» Can allow contiguous loads, faster than .
algorithms

gathers

Loop unrolling and other optimization at

Maximizing the use of vector length o
compilation level:

» Maximize hardware use during the

. » Can bring some additional speedups when the
computations

high-level code is already in its best version

> . .
Not useful for any problem shape > Can be difficult to implement
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