Vectorization of deep learning kernels

Enrique GALVEZ
Under supervision of:
Marc CASAS
Alexandre DE LIMAS SANTANA

Barcelona Supercomputing Center

May - July 2023

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

Overview

1. Motivations and context

2. Methodology
@ Target architecture
@ Programming model
o Execution platform

3. Vectorized kernels
@ The RelLU operation
@ The pooling primitive
@ The batch normalization primitive

4. Conclusion

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

Overview

1. Motivations and context

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

Motivations and context

Deep learning algorithms:
> Became essential in most Al tasks
» Costly in terms of computation
» Example case for HPC research

Vector architectures history:
Intel MMX Fixed vector length of 64bits
AVX/AVX2 Fixed vector length of 256 bits
AVX512 Fixed vector length of 512 bits
SVE Scalable vector length between 128 and 2048 bits
EPI RV64V Scalable vector length up to 16384 bits (target of this work)

Goal:
How to program efficient deep learning algorithms on architectures with long vector length 7

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

Overview

2. Methodology
@ Target architecture
@ Programming model
o Execution platform

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

Target architecture

L2 cache
\’ \’ \’ \’ \’ EPI RiscV Vector processor:

Vector registers . " "
€ » Implements SIMD parallelism across "vectors” of

v v v v v data

PU » PU » PU » PU » PU .
» Scalable vector length up to 16384 bits

vy (512 x float 32)

PU » PU » PU » PU » PU

(2N T A A

» L2 Cache feeds the vector registers

Figure: EPI RiscV Vector processor

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

Programming model

EPI's RISC-V Vector Extension Intrinsic:

> set vector length > memory accesses (loads/stores)
» SIMD arithmetic operations » masked operations
» SIMD relational operations > .

Key points that appeared to influence the performances of vector algorithms:
» Data locality Decrease memory latency (contLoads faster than idxLoads)
» Vector length utilization Use as much processing units as possible
> Register-level data reuse Improve memory accesses to decrease required memory bandwidth
» Code generation Helps reducing the number of instructions executed in PUs

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

Execution platform

‘ . How a deep learning application works ?
1F O > Creates a model using a high level library (Tensorflow, Pytorch...)
HPC lib: OneDNN » The high level library requests computations to a HPC library such
as OneDNN
cru cPu Rvesv » OneDNN selects an implementation depending on architecture and

Figure: OneDNN library operation parameters

Execution environment:
> Real RV64V machine: FPGAs (in development)
» MUSA simulator for features still unimplemented in the FPGAs

May - July 2023

Enrique GALVEZ (Barcelona Supercomputing Center)

Overview

3. Vectorized kernels
@ The RelLU operation
@ The pooling primitive
@ The batch normalization primitive

Enrique GALVEZ (Barcelona Supercomputing Center)

May - July 2023

The RelLU operation

The formula for forward ReLU operation is:

d_15 if s>0
Tl axs ifs<0

Where:
» s is the source pixel
» d is the destination pixel

P> « is a fixed hyperparameter

Scalar code:

for (i = 0 to MB * H * W * C)
out[i] = (in[i] > 0) ? in[i] : (in[i] * a);

Vectorized code:

loop_size = MB * H * W * C;

int gvl = O;

for (i = 0; i < loop_size; i += gvl) {
// compute size of vectors
gvl = vsetvl(loop_size-i);
// load vectors
vE£32 vin = vload(&(in[il), gvl);
vi32 vzeros = vbroadcast(0.0f, gvl);
vf32 valpha = vbroadcast(alpha, gvl);
// test positivity -> pos is a mask
vil pos = vmfge(vin, vzeros, gvl);
// mul masked by pos
vin = vfmul_mask(vin, vin, valpha, pos, gvl);
// store in memory
vstore(&(out[i]), vin, gvl);

Enrique GALVEZ (Barcelona Supercomputing Center)

May - July 2023

The RelLU operation

RV64V vector ReLU performance

120
® FWD —-==- size .
. ® BWD . Experiment:
S 1001 L3000
8 e o, o .,:'. » Test cases taken from real
S [] []
g g0l eoee 12400 networks: ResNet and Yolo
[} 1 a
= () o o X
€ ° 1@ =
£ Y e o] 9] .
5 60 © g 0009 i l1g00% Observations:
© =
P p———) I} . . .

z / 2 » Code vectorization brings up to

4 ! L E=1
z 0] 1200 90x speedup
3 ° 1
el . .
g L0l W [600 » The size of the tensor has a high

[/ .
! TR == / impact over the performance
s P . .
ol ftFpp b e 1l > Peak performance is obtained for
Q.0,) 0.0 ©.% A A XD 0N 0> > 0020 .
SV P GF D AT AT D o VA DD DLV O VP tensors of size around 192kB
ST BV SOV A AN AR D G O NN AP O DO
~F i) ~F »\’b‘ o 087 &t e, (NAS > A AT s G s Ay A G
N SN O PR S PSCa D
ML NN ST Y PRRERY

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

pooling primitive

C CTTTTTTT o 1
7
}’/, ' 4 stride , : C //Zl_ _____ 5
Al ! Al S
' | kérnel ! A '
| ’ I) ! |
, -

b . : fwd pooling H: ! :
EEEEEEE VL
’ L S
\ W

<-------- >
w dst

Figure: The pooling operation

Algorithm:

» Each output pixel is computed as
the average or max of the input
pixels among the kernel

Remarks:
» Involves a lot of memory accesses

» The speed of memory accesses will
be decisive in the speed of the
vectorized algorithm

Note: In order to access memory in the most optimal way, it is important to understand

memory formats.

Enrique GALVEZ (Barcelona Supercomputing Center)

May - July 2023

The pooling primitive

w memory
NCHW: |I Co,Ho,W ©CoHLW CO,H2,W C1,Ho,W C1H1W C1,H2,W
| o e e e e e e e = o mm-— - 1
C memory
NHWC: |I HO,W0,C " Howi,C Ho,W2,C H1,Wo0,C H1,W1,C H1,W2,C
| o e e e e e e e = \[\7 ___________ 1

Figure: The 2 most common memory formats

What is the memory format of a tensor ?
> |t is the way the tensor (multidimensional object) is stored in memory (linear)

> |t specifies which dimension is stored contiguously and which aren't

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

pooling primitive

CArTTTTT o e o c
., e o L ______
/’{’m_| : A : %{Z: vector //:
hefisEesl ' i
1 1 ! N 1 1 !
T ey ST Y b |
1 1 | [N R N
Inun==nis - y %
A e T e <----- >
Y Y W
<-cewTT > et S dt
src src
Figure: FWD pooling: IdxLoad algorithm Figure: FWD pooling: ContLoad algorithm
» Works for any memory format » Works only for NHWC
» Loads aren't contiguous » Since C is inner-most, loads can be contiguous
» Need to compute kernel indices for each » Kernel indices can be computed once and
output pixel used among C dimension

May - July 2023

Enrique GALVEZ (Barcelona Supercomputing Center)

The pooling primitive

number of cycles

> Cycles obtained with MUSA simulator

~N
L 13
‘e

RV64V vector forward pooling cycles

® idxLoad
contlLoad ,

cases from real networks ordered by increasing ic

2048

1024

number of channels

512

96

» idxLoad requires more cycles — slower

» Difference due to the locality of contiguous

memory accesses

Enrique GALVEZ (Barcelona Supercomputing Center)

» Speedups depends on the size of vectorized

speedup wrt scalar implementation

dimension

RV64V vector forward pooling performance

3072

® max-pooling
® avg-pooling

- ic

2560

2048

r 1536

r 1024

r512

cases from real networks ordered by increasing ic

May - July 2023

number of channels

batch normalization primitive

o FWD bnorm naive for NHWC (using contlLoads):
Batch normalization formula:

.src(n, ¢, h,w) — u(c) +8(0) for(n,h,w){

dst(n, c, h, W) = V(C) 2(C) T ¢ for(c=0; c<C; c+=gvl){ // vectorized
g < gvl = vsetvl(C - c);
v_gamma = contLoad(gammal[c]);
v_mu = contLoad(mulc]);
» Almost an eltwise primitive v_sigma2 = contLoad(sigma2[c]);
v_beta = contLoad(betalc]);

» Difference with eltwise: arrays over C

v_eps = vbroadcast(epsilon);
v_src = contLoad(src);

naive algorithm: v_dst = v_gamma * (v_src - v_mu)
> Works for NHWC format ! SRR Eee] < A < Bees
contStore(v_dst);
» Vectorize among C }

» use contlLoads for the arrays over C

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

The batch normalization primitive

FWD bnorm roundBuffer for NHWC:

C
e 2—___~ N\ buff_size = C + maxvl - gcd(C, maxvl);
== == - >— - - 7 ,’ N \\ extendBuffersTo (buff_size);
I N I Y I N
> N > ,’ ! \ for(i=0, i < N*C*H*W, i+=gvl){ // vectorized
= X :] gvl = vsetvl (N*C+H¥W - i);
f \ ! v_eps = vbroadcast(epsilon);
X \ /
= LSRN }/ // load contiguously the arrays
AN . v_gamma = contLoad(buff_gammal[iYC]);
S o _——— v_mu = contLoad(buff_mul[i%C]);
v_sigma2 = contLoad(buff_sigma2[i’Cl);
round buffer v_beta = contLoad(buff_betali’C]);

// compute dst

v_src = contLoad(src[il);

v_dst = v_gamma * (v_src - v_mu)

> Maximize the use of vector length / sqrt(v_sigma2 + v_eps) + beta;
contStore(v_dst[i]);

» Allow contlLoads of channels values

» Optimization for naive targetting the cases }
where IC is small

Enrique GALVEZ (Barcelona Supercomputing Center)

May - July 2023

The batch normalization primitive

RV64V vector forward batch normalization
20 2560

® roundBuffer === ic Experiment:
® naive t 2304 . .
: e > Realized on a RV64V machine (FPGA)
S ° vl . .
g s ¢ e f » Test set from benchDNN including real
£ %0 12 .
: o 8 ol % 50t s o... o0 . network sizes (ResNet, GoogleNet, ...)
R E 2 e T Vg
G N i[5 Conclusions:
£ > ° L t1024 % . .
H o 5 » Roundbuffer is way better than naive for
:.° e 7% small IC
' P [+ » For high IC, this optimization is useless
=T 256 . . .
=TT ’ > Are there other optimizations for high IC ?
04—= 0

cases from real networks ordered by increasing ic

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

e batch normalization primitive

swapLloops algorithm for FWD batch normalization:

Algorithm: for(c=0; c<C; c+=gvl){ // vectorized
gvl = vsetvl(C - c);
» Works for NHWC format v_gamma = contLoad(gammalc]);
> Is an optimization for naive I = contLoad(mulcl);
v_sigma2 = contLoad(sigma2[c]);
» Loops are reordered v_beta = contLoad(betalcl);
v_eps = vbroadcast(epsilon);
. . for(n,h,w){
It improves data locality: v_src = contLoad(src);

v_dst = v_gamma * (v_src - v_mu)
. / sqrt(v_sigma2 + v_eps) + beta;
inner-most loop contStore(v_dst) ;

> Improved register-level data reuse }}

> Statistics loads are moved outside the

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

batch normalization primitive

RV64V vector forward batch normalization

R T — 3000 Experiment:
. . e oops > Realized on a RV64V machine (FPGA)

':?3 . o2 ..' . —— 00 > Tetst selr f.rom b;nc'g[iNgl incll_uc'i\iln% real

%20 .. v...‘:.:“..,:’ ".{';V.:h‘} o network sizes (ResNet, GoogleNet, ...)

E;” é.-.‘:‘.. -":: o .EI -150052 Conclusions:

g ::3 =¥ ..é,:"y.%. ﬁw é » swaploops is significantly better than

ST el . et roundBuffer for /IC > 128

& e ’_‘,/’——’ oo » For these cases, improving data locality is

e more important than using full vector length

ol =zz== T 0 » swaploops can still be improved

cases from real networks ordered by increasing ic

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

The batch normalization primitive

Original swapLoop algorithm: swaplLoops+aritOpt algorithm:
v_sqrt_var = vsqrt(v_sigma2 + v_eps); v_gam_sqrt_var = gamma / vsqrt(v_sigma2 + v_eps);
for(n,h,w){ v_mu_beta = v_mu * v_gam_sqrt_var - v_beta
v_src = contLoad(src); for(n,h,w){
v_dst = v_gamma * (v_src - v_mu) v_src = contLoad(src);
/ sqrt(v_sigma2 + v_eps) + beta; v_dst = v_gam_sqrt_var * v_src - v_mu_beta;
// 4 instructions // 1 instruction
// v_dst = vfsub(v_src, v_mu) // v_dst = vfmsub(v_src, v_gam_sqrt_var,
// v_dst = vfmul (v_dst, v_gamma) // v_mu_beta)
// v_dst = vfdiv(v_dst, v_sqrt_var) contStore (v_dst) ;
// v_dst = vfadd(v_dst, v_beta) }
contStore(v_dst);
}
» Uses expanded arithmetic expression
> 4 instructions in the nhw loop > Only 1 operation remains inside nhw loop.

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

The batch normalization primitive

Loop unrolling: Unroll4 algorithm:

» Optimization at the compilation level
i=0; i *H* ; ++i
> Allow overlapping between arithmetic for é;mgat:(i_grgo‘;]{Al’ Dt
operations and memory accesses compute (v_srcl) ;
compute (v_src2) ;
compute (v_src3) ;
Non unrolled algorithm: store(v_src0);
store(v_srcl);
store(v_src2);
store(v_src3);

for(i=0; i < NxH*W; ++i){

compute (v_src) ; }
// v_src = contLoad(src) i ox= 4;
// v_src = v_gam_sqrt_var * v_src - v_mu_beta for (; i < NxH*W; ++i) {

store(v_src);

compute (v_src0) ;
// contStore(v_src)

store(v_src0);

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

The batch normalization primitive

RV64V vector forward batch normalization
120 ® 3072

® swaploops —-———ic 70 Average speedup of optimized FWD batch normalization
© swaploops+AO oo %0 2816 =
swaplLoops+AO+U4 ° b 3
100 + L

< 00 ® swaplLoops+AO+U8 Yo & o o 2560 é 60
o L) ° ° | s

2 1) v, 0, [2304 i
S 80 F 2048 s
5 H E

° L1792 € g 40
E 25 g
5 60 L1536 5 a

e ° £30
2 L1280 2 5
£ € ©

z 3 3 20
2 40 b 1024 € 4
H

S

@ a

g 768 310
& b
204 r512 &

0

. 256 0°QL'
ol =z - 0 é,,Q"
cases from real networks ordered by increasing ic 9
Experiments:

AO arithmetic optimization

> Realized on RV64V machines (FPGA)
UX UnrollX algorithm

» Test set from benchDNN

Enrique GALVEZ (Barcelona Supercomputing Center)

Overview

4. Conclusion

Enrique GALVEZ (Barcelona Supercomputing Center)

Conclusion

To program efficient algorithms on vector machines, it is important to consider:

The memory format used Keeping a good data locality

. . » Decrease the number of memory accesses
» Defines the algorithm memory access pattern Y

» Very important for memory-bounded

» Can allow contiguous loads, faster than .
algorithms

gathers

Loop unrolling and other optimization at

Maximizing the use of vector length o
compilation level:

» Maximize hardware use during the

. » Can bring some additional speedups when the
computations

high-level code is already in its best version

> . .
Not useful for any problem shape > Can be difficult to implement

Enrique GALVEZ (Barcelona Supercomputing Center) May - July 2023

References

[
E
El
[
[

F. Minervini, O. Palomar, O. Unsal, E. Reggiani, J. Quiroga, J. Marimon, C. Rojas, R. Figueras, A. Ruiz, A. Gonzalez, J. Mendoza, |. Vargas Valdivieso, C. Hernandez Calderdn,
J. Cabre, L. Khoirunisya, M. Bouhali, J. Pavon, F. Moll, M. Olivieri, and A. Cristal, “Vitruvius+: An area-efficient risc-v decoupled vector coprocessor for high performance computing
applications,” ACM Transactions on Architecture and Code Optimization, vol. 20, 12 2022.

A. d. L. Santana, A. Armejach, and M. Casas, “Efficient direct convolution using long simd instructions,” in Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, PPoPP '23, (New York, NY, USA), p. 342-353, Association for Computing Machinery, 2023.

C. Rodrigues, A. Phaosawasdi, and P. Wu, “Simdization of small tensor multiplication kernels for wide simd vector processors,” in Proceedings of the 2018 4th Workshop on
Programming Models for SIMD/Vector Processing, WPMVP'18, (New York, NY, USA), Association for Computing Machinery, 2018.

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol. abs/1512.03385, 2015.

	Motivations and context
	Methodology
	Target architecture
	Programming model
	Execution platform

	Vectorized kernels
	The ReLU operation
	The pooling primitive
	The batch normalization primitive

	Conclusion

