
École Normale Supérieure de Lyon

Master 1 Computer Science

Internship report

Vectorization of deep learning kernels

Enrique GALVEZ

Under supervision of
Marc CASAS

Alexandre DE LIMAS SANTANA

Laboratory : Barcelona Supercomputing Center

EPI team

1st of May 2023 – 21st of July 2022

Contents

Context and motivations 2

1 Methodology 2
1.1 Target architecture . 2
1.2 Programming model . 3
1.3 Exploiting the full potential of vector architectures 4
1.4 Execution platform . 4

2 The ReLU primitive 6
2.1 How to vectorize the ReLU primitive ? . 6
2.2 Performance improvements . 7

3 The pooling primitive 8
3.1 Introducing the pooling operation . 8
3.2 About memory formats . 8
3.3 Vectorizing pooling operations for an appropriate memory format 9
3.4 Performance improvements . 9

4 The batch normalization primitive 11
4.1 Introducing sequential batch normalization 11
4.2 Maximizing the use of vector length . 11
4.3 Improving cache-level data reuse . 13
4.4 Decreasing the number of operations . 14
4.5 Performance improvements . 16

Conclusion 17

Références 18

1

Context and motivations

In the dynamic realm of artificial intelligence, deep learning algorithms have emerged as
a game-changer, bringing with them new technologies and new challenges. However, the
growing complexity of models and datasets has placed a considerable computational strain
on these algorithms. To meet this challenge, the field of High-Performance Computing
(HPC) has been actively investigating new ways to accelerate computations, by creat-
ing new computer architectures or by creating high performance applications on already
existing ones.

Because of the highly parallel nature of deep learning operations, the option of Single
Instruction, Multiple Data (SIMD) parallelism can be very interesting for such algorithms.
Moreover, because vector architectures are equipped with CPUs supporting efficient SIMD
instructions, they may offer very interesting speedups on deep learning computations.

Over the course of the history of vector architectures, there has been a trend towards
increasing vector length, which is the size of SIMD parallelism. It began with Intel MMX
[1], offering a fixed vector length of 64 bits, providing moderate levels of parallelism. Sub-
sequently, AVX (Advanced Vector Extensions) and AVX2 [2] architectures raised the bar
with a vector length of 256 bits, enhancing computational capabilities.

As the demand for even more significant computational power intensified, AVX512
emerged with a vector length of 512 bits, further amplifying the parallel processing poten-
tial. The first vector architecture with scalable vector length were the SVE [3] (Scalable
Vector Extension) architectures, offering vector lengths between 128 bits and 2048 bits.
Currently, under development, the EPI (European Processor Initiative) RV64V [4] archi-
tecture takes this trend to new heights by implementing a device where vector length is
scalable and can be set up to 16384 bits.

In this context of evolving vector architectures, it can be interesting to propose efficient
algorithms for long vector architectures, in our case the EPI RV64V architecture. My work
takes place in the continuity of Alexandre De Limas Santana’s work [5], which focus on
proposing efficient convolution algorithms for such architectures. Indeed, the significant
speedups obtained by vectorizing the convolution layers have motivated this work, which
propose efficient vector algorithms for 3 other deep learning operations: ReLU, pooling
and batch normalization.

Besides proposing efficient vector algorithms for these layers, this work also aims to
establish principles for programming efficient vector algorithms. These principles will serve
as guiding factors for conceiving algorithms that exploit the full potential of long vector
architectures.

1 Methodology

1.1 Target architecture

The target architecture is the EPI RV64V architecture, a vector architecture being devel-
opped for the EPI project [6]. As a vector architecture, it implements SIMD parallelism
in an efficient way.

As a reminder, SIMD parallelism (Single Instruction, Multiple Data) is a type of parallel
processing technique used in computer architectures to perform the same operation on

2

multiple independent data elements simultaneously. Instead of processing data sequentially,
SIMD parallelism allows a single instruction to operate on a vector of data elements in
parallel, greatly accelerating computation for tasks that can be parallelized.

Our work especially targets long vector architectures, especially EPI RV64V processor,
which can be reprensented in the Figure 1 below. As we can see on the sketch, the L2 cache
feeds the vector registers, which contains the data processed in parallel by the processing
units (PU).

L2 cache

Instruction 1 PU

Instruction 2

...

PU PU PU PU

PU PU PU PU PU

Vector registers

Figure 1: EPI RiscV Vector processor

It is important to keep in mind that the vector length is scalable, up to 16384 bits
which represents 512 × the size of an element of type float32.

1.2 Programming model

In order to program efficient algorithms on vector architectures, we have to use specific
instructions in order to tell the architecture how to perform the SIMD instructions. In
our case, it is made, using the EPI Intrinsincs [7] instruction set. This set contains
instructions that can be used to tell the compiler which computations should be done in
parallel and how.

Figure 2 shows a list of instructions proposed in EPI Intrinsincs:

Set vector length

• gvl = vsetvl(rvl, sew, lmul)

SIMD arithmetic operations:

• vr = vfadd(v1, v2, gvl)

• vr = vfmul(v1, v2, gvl)

• vr = vfmadd(v1, v2, v3, gvl)

• ...

Memory accesses:

• vr = vLoad(src, gvl)

• vStore(v data, dst, gvl)

• vr = vIdxLoad(v idx, src, gvl)

• vIdxStore(v idx, v data, dst, gvl)

• ...

3

SIMD relational operations: (return a mask)

• meq = vmfeq(v1, v2, gvl)

• mge = vmfge(v1, v2, gvl)

• ...

Masked operations:

• v3 = vfadd mask(v def, m1, v1, v2,
gvl)

• v1 = vLoad mask(v def, m1, src, gvl)

• ...

Figure 2: EPI Intrinsincs instruction set

We can see in Figure 2 that we have at our disposal different kinds of instructions.
A very important one is vsetvl which allows us to set the vector length. We can also
perform SIMD arithmetic operations, using for example the above examples, working with
floating-point operands. Regarding the memory accesses, we will divide them in two kinds:
the ”contiguous” loads/stores (vLoad/vStore1) which allows to load contiguous data from
memory and secondly the ”gather/scatter” (idxLoad/idxStore) which allows to load/store
memory from sparse locations specified in an index vector.

1.3 Exploiting the full potential of vector architectures

After understanding how SIMD parallelism and vector architectures work, it is possible
to establish some factors that seem to play a decisive role in the performance of vector
algorithms.

The first one is preferring loading contiguous data to gather operations. Indeed,
the architecture is made in such a way that loading data in sparse locations is way slower
than just taking some contiguous array and loading it into vector registers. [8]

A second one is improving cache-level data reuse. Indeed, as L2 cache feeds
the vector registers, the device is able to keep vectors in cache to reuse it for further
computations instead of having to re-load it.

A third one is maximizing the vector length of used vectors. Indeed, the ar-
chitecture is able to make computations on up to 512 operands of type float32 so using a
smaller vector length will mean using less computational power as we could have. In the
following, we call that ”waste of vector length”.

Overall, we can also take a look to smart code generation in order to minimize the
final number of operations performed by the hardware.

In the following, we will try to apply as much as possible these four principles while
trying to vectorize deep learning kernels.

1.4 Execution platform

This work aims at optimizing deep learning algorithms. But, in order to work directly on
real use cases, all my algorithms will be integrated into OneDNN [9], an open-source HPC
library developped by Intel. OneDNN is designed to accelerate deep learning workloads
on a variety of hardware architectures, including CPUs, GPUs, and FPGAs. Written

1sometimes noted as contLoad/contStore in the following

4

in C++, OneDNN allows me to write algorithms directly in C++ with the EPI Intrinsincs
instructions. Then, the application BenchDNN can be used to test the correctness of the
algorithms and run experiments on real networks.

Moreover, to run the experiments presented below, I had access to real EPI RV64V
machines. However, this hardware is still in development and some operations such as
integer operations are still not implemented. For the algorithms that required integer
computations (especially for indices), I had to use a simulator.

...

HPC lib: OneDNN

CPU GPU RV64V

Figure 3: OneDNN library

Figure 3 shows how an HPC library such as OneDNN interacts with widely used ma-
chine learning libraries (Tensorflow, Pytorch...) by providing a fast implementation of the
computations requested by these high level libraries, optimized for the detected hardware.

5

2 The ReLU primitive

2.1 How to vectorize the ReLU primitive ?

A simple example of a vectorized program is the forward ReLU operation.
The formula for the forward ReLU operation is:

dst[n, c, h, w] =

{
src[n, c, h, w] if src[n, c, h, w] > 0
α× src[n, c, h, w] if src[n, c, h, w] ≤ 0

The pseudo code of the ReLU operation is simple:

1 for (n = 0 to MB)

2 for(c = 0 to C)

3 for(h = 0 to H)

4 for(w = 0 to W)

5 out[n,c,h,w] = (in[n,c,h,w] > 0) ? in[n,c,h,w]

6 : (in[n,c,h,w] * α);

Listing 1: forward non-vectorized ReLU on a tensor of sizes (MB,H,W,C)

In this code, we observe that the computation of each value in the destination tensor
is independent from the others. This allow us to vectorize the loops by assigning to each
element of the tensor an index in a vector. For this kind of computation, the vectorized
code is simple because the vector instructions follows the sequential operations.

1 loop_size = MB * H * W * C;

2 int gvl = 0;

3

4 for (i = 0; i < loop_size; i += gvl) {

5 // compute size of vectors

6 gvl = vsetvl(loop_size-i);

7 // load vectors

8 vf32 vin = vload(&(in[i]), gvl);

9 vf32 vzeros = vbroadcast(0.0f, gvl);

10 vf32 valpha = vbroadcast(alpha, gvl);

11 // test positivity -> pos is a mask

12 vi1 pos = vmfge(vin, vzeros, gvl);

13 // mul masked by pos

14 vin = vfmul_mask(vin, vin, valpha, pos, gvl);

15 // store in memory

16 vstore(&(out[i]), vin, gvl);

17 }

Listing 2: forward vectorized ReLU on a tensor of sizes (MB,H,W,C)

6

In the piece of code above (Listing 2), we can see some important concepts in algorithm
vectorization:

• gvl is given by the hardware thanks to vsetvl operation

• We can use broadcasts for the values involved in all the computations

• Condition evaluation returns a mask, i.e. a vector of 0 and 1 values

• The final result is computed using an instruction mul mask with vin as default value

Moreover, this algorithm is our first chance to apply one of our 4 principles stated in
the last part. Indeed, because tensor size depends on the problem, we can not guarantee
that the last iteration of a vectorized loop will use the full vector length. So, in order to
maximize the vector length among the computations, it is important to decrease as much
as possible the number of times when the algorithm is at the last iteration of a vectorized
loop. Here, the solution is to ”collapse” the loops and vectorize among the collapsed loop.
By doing this, we execute only once the vectorized loop, so there remains only one situation
involving a waste of vector length.

2.2 Performance improvements

Figure 4: Performance of the ReLU operation

Figure 4 shows the performance of ReLU operation on a real RV64V hardware. The
test cases are taken from real netwworks: ResNet [10] and Yolo [11]. We can see that code
vectorization brings an execution time up to 90 times faster than the scalar implementation.
We also see that the tensor size has a high impact over the speedup. The peak speedup is
obtained for test cases where the tensor size is greater than 192kB.

7

3 The pooling primitive

3.1 Introducing the pooling operation

fwd pooling

kernel

src
dst

stride

H

W

H

W

C
C

Figure 5: The forward pooling operation

Figure 5 shows how the pooling operation works. Each destination pixel is computed as
the maximum or the average among a certain kernel in the source image.

This operation involves a lot of memory accesses and the vectorization of pooling might
be slightly more difficult than the vectorization of ReLU because of the absence of the direct
correspondence between a source pixel and its equivalent in the destination.

In order to elaborate vectorized algorithms for the pooling operations, we need to
understand how the data is organized in memory.

3.2 About memory formats

Memory formats are used to describe the way data is organized in memory. We refer to a
memory layout using letters describing the different dimension, ordered in the same way
as the dimensions are organized in memory.

As an example, the Figure 6 below shows the 2 common memory formats:

memory

NCHW: C0,H0,W C0,H1,W C0,H2,W C1,H0,W C1,H1,W C1,H2,W

W

H

memory

NHWC: H0,W0,C H0,W1,C H0,W2,C H1,W0,C H1,W1,C H1,W2,C

C

W

...

...

Figure 6: The 2 most common memory formats

An important thing to note is that with NHWC format, for fixed N,H and W, the
elements among the C dimension are contiguous in memory, while for NCHW format, the
elements among the W dimension are the ones being contiguous in memory for N,C and H
fixed.

8

Using an appropriate memory format is crucial for vector algorithms because it will
decide if we can use contiguous loads or if we will be forced to use indexed loads which
are slower. This being said, we observe that the pooling operation is an occasion to put in
application the first of the four principles stated in the introduction.

3.3 Vectorizing pooling operations for an appropriate memory format

src
dst

H

W

H

W

C
C

vectorfwd pooling

Figure 7: FWD pooling: IdxLoad algorithm

fwd pooling

src

dst

H

W

H

W

C
C

vector

Figure 8: FWD pooling: ContLoad algo-
rithm

A first natural algorithm which we can think about to vectorize the pooling operation is
the idxLoad algorithm, represented above in figure 7. In this version, we vectorize among
the pixels in the destination tensor and we use vector instructions to compute the max
or the average among the kernel. In order to follow the vector-length principle, the loops
among the destination tensor are collapsed. As we can see it in the figure, the data to
gather from the input tensor may not be contiguous, so this version requires indexed loads
to work. We can also note that this algorithm works for any memory format.

Secondly, in order to follow the first principle enounced previousy, we should prefer
contLoads to idxLoads. In order to do so, I proposed the contLoad algorithm, represented
in Figure 8. This algorithm works only for NHWC format and takes advantage of the fact
that C is inner-most to do contiguous loads. Something to note here is that contLoads
algorithm involves vectorizing only among the C dimension.

3.4 Performance improvements

Because the hardware which ran the experiments was still in developpment, it had no
support for vector integer computations. This is the reason why I had to use the MUSA
simulator in order to evaluate the performance of the idxLoads algorithm. The output of
the simulator gives the number of CPU cycles needed for the execution of the application
in an appropriate vector machine. The bigger the number of cycles is, the slower the
algorithm is.

This being said, the first graph (Figure 9) shows that the idxLoad is way slower than
contLoad algorithm in most cases. This confirms that indexed loads are slower than
contiguous vector loads.

9

Figure 9: FWD RV64V pooling cycles

However, to be able to do contiguous vector loads, we have to reduce the size of vec-
torized dimension. Indeed, when idxLoad algorithm has vectors among all the loops
gathered, contLoad version only vectorize the C dimension. This is the reason why, for
cases with very small C dimension, the benefice of contLoads is not enough to balance the
benefice of collapsing all the loops.

Figure 10: FWD RV64V pooling performance

Overall, the algorithm to keep here is contLoad, because contiguous vector loads allow
to really take advantage of the vector architecture. Compared to sequential algorithm on
Figure 10 on real hardware, it brings up to 10 times speedups.

10

4 The batch normalization primitive

4.1 Introducing sequential batch normalization

Batch normalization can be described by the formula below:

dst(n, c, h, w) = γ(c) · src(n, c, h, w)− µ(c)√
σ2(c) + ε

+ β(c),

Where

• γ(c), β(c) are optional scale and shift for a channel

• µ(c), σ2(c) are mean and variance for a channel

• ε is a constant

The key factor for vectorizing this primitive is how we access the values in γ, β, µ and
σ2. Indeed, without these arrays, batch normalization would have been an elementwise
operation, such as ReLU.

We can imagine a first vectorized algorithm for batch normalization:

1 for(n,h,w){

2 for(c=0; c<C; c+=gvl){ // vectorized

3 gvl = vsetvl(C - c);

4 v_gamma = contLoad(gamma[c]);

5 v_mu = contLoad(mu[c]);

6 v_sigma2 = contLoad(sigma2[c]);

7 v_beta = contLoad(beta[c]);

8 v_eps = vbroadcast(epsilon);

9 v_src = contLoad(src);

10 v_dst = v_gamma * (v_src - v_mu) / sqrt(v_sigma2 + v_eps) + beta;

11 contStore(v_dst);

12 }

13 }

Listing 3: Forward batch normalization, naive algorithm

This algorithm is made for NHWC in order to do contiguous loads and stores on source
and destination tensor. Moreover, algorithm is vectorized among the C loop to allow
contiguous loads on the arrays of the C value.

4.2 Maximizing the use of vector length

According to our principles, a first issue with naive algorithm is the fact that the vector-
ization among C dimension may involve a poor use of vector length.

In order to improve the use of vector length for cases with small IC, we want to collapse
However, the issue in batch normalization which prevent us from doing loop collapsing

are the arrays of the C values which we should load. Basically, there are several ways to

11

access these arrays but the point of this first algorithm is to make these access in a smart
way in order to allow loop collapsing and, by doing so, maximizing the use of vector length.

...

C

N
x
H
x
W

round buffer

Figure 11: the roundBuffer

The idea of the algorithm is to use a roundBuffer (see Figure 11) to store the statistics
and allowing us to access them using contiguous loads, even if the starting point of the
contLoad is not the index 0. In the following, we call roundBuffer this algorithm.

1 buff_size = C + maxvl - gcd(C, maxvl);

2 extendBuffersTo(buff_size);

3

4 for(i=0, i < N*C*H*W, i+=gvl){ // vectorized

5 gvl = vsetvl(N*C*H*W - i);

6 v_eps = vbroadcast(epsilon);

7 // load contiguously the arrays

8 v_gamma = contLoad(buff_gamma[i%C]);

9 v_mu = contLoad(buff_mu[i%C]);

10 v_sigma2 = contLoad(buff_sigma2[i%C]);

11 v_beta = contLoad(buff_beta[i%C]);

12 // compute dst

13 v_src = contLoad(src[i]);

14 v_dst = v_gamma * (v_src - v_mu) / sqrt(v_sigma2 + v_eps) + beta;

15 contStore(v_dst[i]);

16 }

Listing 4: FWD bnorm roundBuffer

The Listing 4 shows how the roundBuffer algorithm works. It starts by an initializa-
tion of the roundBuffers by extending the arrays to the size buff size = C + max vl −
gcd(C,max vl). Then, at any point of the next loop, the algorithm is still able to perform
contLoads to load the data in these arrays.

The Figure 12 shows the performance of roundBuffer algorithms. We can see that
it provides good speedups over the naive version, especially for low values of IC. This is
coherent with the fact that this algorithm is made to prevent the ”waste of vector length”
which can occur when vectors are not fully used, which is the case for small IC.

12

Figure 12: Performance of roundBuffer algorithm

However, its performance is equivalent to naive’s around IC=vector length and it be-
came slower than naive for big IC cases.

Despite the good results we had, they encourage us to look for even better algorithms.

4.3 Improving cache-level data reuse

As I said previously, naive algorithm was non optimal regarding the vector length used.
But it was also non-optimal regarding the locality of the data used in each computation.

We can indeed notice that we do not need to fill the destination tensor in order, and
we can, by reordering the loops, fill this tensor while keeping in memory the values among
C variable. This results in the swapLoops algorithm, in Listing 5.

1 for(c=0; c<C; c+=gvl){ // vectorized

2 gvl = vsetvl(C - c);

3 v_gamma = contLoad(gamma[c]);

4 v_mu = contLoad(mu[c]);

5 v_sigma2 = contLoad(sigma2[c]);

6 v_beta = contLoad(beta[c]);

7 v_eps = vbroadcast(epsilon);

8 for(n,h,w){

9 v_src = contLoad(src);

10 v_dst = v_gamma * (v_src - v_mu) / sqrt(v_sigma2 + v_eps) + beta;

11 contStore(v_dst);

12 }

13 }

Listing 5: FWD bnorm roundBuffer

In Figure 13, we can observe the expected very good speedup obtained by swapLoop

13

over roundBuffer and naive. However for cases with very small IC, roundBuffer is still
better because swapLoops does not maximize the vector length. These results show the
importance of a good data reuse, which was our third principle in the introduction. More-
over, we see in these results that a good data reuse can provide a faster algorithm than
vector length in some cases.

Figure 13: RV64V batchNorm performance

4.4 Decreasing the number of operations

Now we have a fast algorithm with swapLoops, we can try to apply the last principle:
reducing the number of operations. A first way to do this is to think about the way we do
the arithmetic operations to compute the batch normalization formula.

Listings 6 and 7 shows how we can decrease this number of operations, by changing the
way the result is computed.

1 v_sqrt_var = vsqrt(v_sigma2 + v_eps);

2 for(n,h,w){

3 v_src = contLoad(src);

4 v_dst = v_gamma * (v_src - v_mu) / sqrt(v_sigma2 + v_eps) + beta;

5 // 4 instructions

6 // v_dst = vfsub(v_src, v_mu)

7 // v_dst = vfmul(v_dst, v_gamma)

8 // v_dst = vfdiv(v_dst, v_sqrt_var)

9 // v_dst = vfadd(v_dst, v_beta)

10 contStore(v_dst);

11 }

Listing 6: Original swapLoops

14

1 v_sqrt_var = v_gamma / vsqrt(v_sigma2 + v_eps);

2 v_beta = v_mu * v_sqrt_var - v_beta

3 for(n,h,w){

4 v_src = contLoad(src);

5 v_dst = v_sqrt_var * v_src - v_beta;

6 // 1 instruction

7 // v_dst = vfmsub(v_src, v_sqrt_var, v_beta)

8 contStore(v_dst);

9 }

Listing 7: swapLoops + aritOpt

Another way to decrease the amount of operations is loop unrolling. This technique
takes place during the compilation and it allows the compiler to reduce the number of
jump operations and it also allows overlapping between arithmetic operations and memory
accesses. Listing 9 shows how an unrolled by 4 loop would look like in C.

1 for(i=0; i < N*H*W; ++i){

2 compute(v_src);

3 // v_src = contLoad(src)

4 // v_src = v_gam_sqrt_var * v_src

5 // - v_mu_beta

6 store(v_src);

7 // contStore(v_src)

8 }

Listing 8: non unrolled algorithm

1 for (i=0; i < N*H*W/4; ++i) {

2 compute(v_src0);

3 compute(v_src1);

4 compute(v_src2);

5 compute(v_src3);

6 store(v_src0);

7 store(v_src1);

8 store(v_src2);

9 store(v_src3);

10 }

11 i *= 4;

12 for (; i < N*H*W; ++i) {

13 compute(v_src0);

14 store(v_src0);

15 }

Listing 9: Unroll4 algorithm

15

4.5 Performance improvements

Figure 14: RV64V batch normalization performance

In the graphs above, AO stands for ”aritOpt” and UX stands for ”Unrolled by X”.
We can see in Figure 14 the outstanding results that we got by applying all of the

previously mentioned optimizations. It shows that for an algorithm with a high level of
data reuse, reducing the number of operations can provide very high speedups (here in
average 60 times faster than the scalar implementation, and in average 4 times faster than
swapLoops without optimizations).

16

Conclusion

In this report, we have explored the efficient programming of deep learning algorithms
on vector architectures, with a specific focus on a long vector architecture: EPI RV64V.
Our investigation centered on three critical operations in deep learning networks: ReLU,
Pooling, and batch normalization.

Through the conception of vector algorithms for these operations, we have identified
a set of principles playing a vital role in maximizing computational performance, thereby
leveraging the full potential of vector architectures.

The first and most crucial principle emphasizes the preference for loading contiguous
data over ”gather” operations. By strategically loading data into vector registers from
contiguous arrays, we exploit the architecture’s design, enabling faster data access and
minimizing overhead associated with sparse data loading.

The second principle emphasizes improving cache-level data reuse. Leveraging the L2
cache to feed vector registers enables the device to maintain vectors in cache for subsequent
computations, reducing the need for redundant data reloading.

Next, maximizing the vector length of used vectors emerges as the third principle. As
the architecture allows computations on up to 512 operands of type float32, using a smaller
vector length would result in a waste of computational power. Hence, optimizing vector
length is essential to fully harness the computing capabilities.

Overall, we acknowledge the significance of smart code generation. By reducing our
code to a minimal amount of CPU instructions, we can greatly improve the performance
of our algorithms.

In conclusion, this work sheds light on the paramount importance of adhering to these
principles in designing efficient algorithms for vector architectures. By combining these
insights and optimizing our approach to ReLU, Pooling, and batch normalization opera-
tions, we have paved the way for improving the support of deep learning computations on
the specific EPI RV64V architecture.

17

References

[1] A. Peleg, S. Wilkie, and U. Weiser, “Intel mmx for multimedia pcs,” Commun. ACM,
vol. 40, p. 24–38, jan 1997.

[2] C. Lomont, “Introduction to intel advanced vector extensions,” Intel white paper,
vol. 23, pp. 1–21, 2011.

[3] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker, “The arm
scalable vector extension,” IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017.

[4] community, “Risc-v vector extension.” https://github.com/riscv/riscv-v-
spec/blob/master/v-spec.adoc.

[5] A. d. L. Santana, A. Armejach, and M. Casas, “Efficient direct convolution using long
simd instructions,” in Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, PPoPP ’23, (New York, NY, USA),
p. 342–353, Association for Computing Machinery, 2023.

[6] F. Minervini, O. Palomar, O. Unsal, E. Reggiani, J. Quiroga, J. Marimon,
C. Rojas, R. Figueras, A. Ruiz, A. González, J. Mendoza, I. Vargas Valdivieso,
C. Hernández Calderón, J. Cabre, L. Khoirunisya, M. Bouhali, J. Pavon, F. Moll,
M. Olivieri, and A. Cristal, “Vitruvius+: An area-efficient risc-v decoupled vector
coprocessor for high performance computing applications,” ACM Transactions on Ar-
chitecture and Code Optimization, vol. 20, 12 2022.

[7] E. processor initiative, “Epi intrinsincs reference.”
https://ssh.hca.bsc.es/epi/ftp/doc/intrinsics/EPI/epi-intrinsics.html.

[8] C. Rodrigues, A. Phaosawasdi, and P. Wu, “Simdization of small tensor multiplication
kernels for wide simd vector processors,” in Proceedings of the 2018 4th Workshop
on Programming Models for SIMD/Vector Processing, WPMVP’18, (New York, NY,
USA), Association for Computing Machinery, 2018.

[9] Intel, “Oneapi deep neural network library.” https://oneapi-src.github.io/oneDNN/.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

[11] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

18

	Context and motivations
	Methodology
	Target architecture
	Programming model
	Exploiting the full potential of vector architectures
	Execution platform

	The ReLU primitive
	How to vectorize the ReLU primitive ?
	Performance improvements

	The pooling primitive
	Introducing the pooling operation
	About memory formats
	Vectorizing pooling operations for an appropriate memory format
	Performance improvements

	The batch normalization primitive
	Introducing sequential batch normalization
	Maximizing the use of vector length
	Improving cache-level data reuse
	Decreasing the number of operations
	Performance improvements

	Conclusion
	Références

