A study of Convolutions for Efficient Inference of Deep Neural

Networks on Embedded Processors

Enrique GALVEZ
Under supervision of:

Alix MUNIER
Adrien CASSAGNE

LIP6, ALSOC Team

February - July 2024

Enrique GALVEZ February - July 2024

Context and motivations

Convolutionnal Neural Networks (CNNs)
> State-of-the-Art method for most image-based tasks (classification, object-detection...)
» Composed by a succession of layers: Convolution, pooling, activation...

> 3 steps: Design, learning and inference

Enrique GALVEZ February - July 2024

Context and motivations

Convolutionnal Neural Networks (CNNs)
> State-of-the-Art method for most image-based tasks (classification, object-detection...)
» Composed by a succession of layers: Convolution, pooling, activation...

> 3 steps: Design, learning and inference

Systems-on-Chip (SoCs)
» Good target for CNN inference

» Both latency and energy consumption should be optimized

Enrique GALVEZ February - July 2024

Context and motivations

Convolutionnal Neural Networks (CNNs)
> State-of-the-Art method for most image-based tasks (classification, object-detection...)
» Composed by a succession of layers: Convolution, pooling, activation...

> 3 steps: Design, learning and inference

Systems-on-Chip (SoCs)
» Good target for CNN inference

» Both latency and energy consumption should be optimized

Contribution
» Study of 4 convolution approaches: direct, im2row/im2col, winograd and implicit lowering
> Efficient implementation of these algorithms for CPU inference of usual CNNs

» Performance evaluation with respect to Latency and Energy consumption

Enrique GALVEZ February - July 2024

Overview

1. Preliminaries
@ Problem scope
o Working with tensors
o The convolution layer

Enrique GALVEZ February - July 2024

Problem scope

300

250

N
o
S

Latency for 1 inference (ms)
G
S

50

Temporal cost of convolutions in a network inference

=== convolutions W= other computations

Network

Figure: Proportion of time spent in convolutions for
common networks.

Convolution layers:
» Cost almost 70% of the total inference time

» Their implementation is critical for CNN
inference

February - July 2024

Enrique GALVEZ

Problem scope

300

250

N
o
S

Latency for 1 inference (ms)
G
S

50

Temporal cost of convolutions in a network inference

=== convolutions W= other computations

Network

Figure: Proportion of time spent in convolutions for
common networks.

Convolution layers:
» Cost almost 70% of the total inference time

» Their implementation is critical for CNN
inference

State-of-the-art convolutions:
> Main targets are GPUs/TPUs
» No open-source efficient CPU implementations

» No measures “from the socket” for energy
consumption, which is a relevant metric for SoCs

February - July 2024

Enrique GALVEZ

Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

AxBxCxD:

Figure: Tensor with format A x B x C x D in memory.

Enrique GALVEZ February - July 2024

Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

AxBxCxD:

Figure: Tensor with format A x B x C x D in memory.

Image processing tensor: batch x channels x image_height x image_width

Enrique GALVEZ February - July 2024

Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

AxBxCxD:

Figure: Tensor with format A x B x C x D in memory.

Image processing tensor: batch x channels x image_height x image_width

MB batch size KH, KW | kernel height, width || PH, PW | padding height, width
IC input channels oC output channels SH, SW | stride height, width
IH, IW | input height, width || OH, OW

output height, width || DH, DW | dilation height, width

Table: Notations for the main convolution parameters.

Input tensor: MB x IC x IH x IW Output tensor: MB x OC x OH x OW

Enrique GALVEZ

February - July 2024

The convolution layer

Formula: (Assuming DH = DW =0 and SH = SW =1)

IC—1 KH—1 KW—1
dst[mb, oc, oh, ow] = Z Z Z src(mb, ic, oh + kh — PH, ow + kw — PW)-weights|oc, ic, kh, kw].

ic=0 kh=0 kw=0 ih iw
|C //7 :: 1T - T’\”\’T’\’]
-’ ‘ ‘ oc 7
g i 1 TN
TETT T T T:’\ al o 7: Ic 77<7K7'—\|7\>A -
PHKL L M T Af IE I | A
r - i \\\\\\L KW :
P - K NN 1
(O S N I N S Sy) T IC NN 1
L L - 7’ 1
iLo - Rl 77 A)
') EER RN | ,;/'/ . !
i i N |
Vi - 4 pam—— o
fofm mm e e e >
PW w
inputs tensor weights tensor outputs tensor

Enrique GALVEZ February - July 2024

Overview

2. Convolution implementations
@ Direct convolutions
@ im2row based convolutions
@ Winograd's method

Enrique GALVEZ

February - July 2024

Direct convolutions

Algorithm 1: Naive direct convolution.
1 Input tensor src: (MB x IC x IH x IW)

Naive algorithm:

2 Weights tensor wei: (OC x IC x KH x KW) > lterates through output tensor
3 |for mb=0 to MB do » Sums products of src and wei
for oc=0to OC do elements accross IC, KH, KW

4

5 |for oh=0 to OH do

6 |for ow=0 to OW do
7

8

9

d+ 0

for ic=0 to IC do
for kh=0 to KH do
10 for kw=0 to KW do

11 ih + oh-SH + kh- (DH + 1) — PH
12 iw < ow - SW + kw - (DW + 1) — PW
13 d < d + src[mb, ic, ih, iw] x weiloc, ic, kh, kw]

14 dst[mb, oc, oh, ow] <+ d
15 Return dst: (MB x OC x OH x OW)

1Zhang et al. 2018, " High Performance Zero-Memory Overhead Direct Convolutions”

Enrique GALVEZ February - July 2024

Direct convolutions

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15

Algorithm 1: Naive direct convolution.

Input tensor src: (MB x IC x IH x IW)
Weights tensor wei: (OC x IC x KH x KW)

for mb=0 to MB do
for oc=0 to OC do
for oh=0 to OH do
for ow=0 to OW do

d+ 0

for ic=0 to IC do
for kh=0 to KH do
for kw=0 to KW do
ih + oh-SH + kh- (DH + 1) — PH
iw < ow - SW + kw - (DW + 1) — PW
d < d + src[mb, ic, ih, iw] x weiloc, ic, kh, kw]
dst[mb, oc, oh, ow] <+ d

Return dst: (MB x OC x OH x OW)

Naive algorithm:

P lterates through output tensor

» Sums products of src and wei
elements accross IC, KH, KW

Optimized version!: (See Annex 2)

v

Change the order of the loops

» Reuse src[mb, ih, iw, ic] accross OC
» Add cache blocking

» Parallelize accross well-chosen loops
>

Use appropriate storage format for
src and wei

1Zhang et al. 2018, " High Performance Zero-Memory Overhead Direct Convolutions”

Enrique GALVEZ

February - July 2024

im2row based convolutions

QA W N =

im2row? algorithm:
» src tensor is transformed in a matrix im_buf

» The convolution is computed as the matrix multiplication between M and wei

Main im2row benefits:
» GEMM is a very regular operation, allowing hardware and software optimizations
» High performance math libraries provides highly optimized implementations of GEMMs

Algorithm 2: im2row convolution.

Input tensor src: MB x IH x IW x IC

Weights tensor wei: (IC x KH x KW) x OC

im_buf < im2row(input) ; // im_buf : MB x OH x OW x (IC x KH x KW)
dst < BLAS_GEMM(im_buf, wer)

Return dst ; // dst: MB x OH x OW x OC

2Chellapilla et al. 2006, "High Performance Convolutional Neural Networks for Document Processing”

Enrique GALVEZ February - July 2024

im2row based convolutions

im2row transformation:
» Data required by each kernel is gathered in a row of the buffer
» Involves data duplication due to overlapping kernels
» Implicit lowering: reduces memory footprint by performing the im2row transformation on-the-fly

KH x KW x IC
<------------- > (0]
A A F==A L
1
i ' ' NN
TRON SRS ESNEN | AT
Al - 2 oy . 1
i /‘ - im2row X! GEMM ! H—
1 1
' AR i z % 3 |::> on'! |
IH, , ol x1 |
Vo - o, i -
‘ ‘ =, i~ .
" o | | \%
2 - | | <------>
Lot 1 ! ! ow
_______ ! \%
< W > %
src tensor im2row buffer weights tensor output tensor

Figure: Computing a convolution using im2row.

Enrique GALVEZ February - July 2024

Winograd's method: example for 1D convolution

1D conv

[h AR [A] X [&]&a || = [fixe + ixe + oxg | hxg + hxg + hxa
inputs weights outputs

Figure: FIR filter F(2,3) seen as a 1D convolution.

3A. Lavin and S. Gray 2015, "Fast Algorithms for Convolutional Neural Networks”

Enrique GALVEZ February - July 2024

Winograd's method: example for 1D convolution

1D conv

[h AR [A] X [&]&a || = [fixe + ixe + oxg | hxg + hxg + hxa
inputs weights outputs

Figure: FIR filter F(2,3) seen as a 1D convolution.

_ _ 8 + 81+ &

fof 6 (2 [+ mp + m . my = (fy — £)go, mz—(ﬁ-l-fz)f,
g | = with

i L £ mo — m3 — my fl)go—g1+g2

—

~<
|

my = (f —)go, mz=(fh—

Figure: Winograd's algorithm for F(2, 3).

3A. Lavin and S. Gray 2015, "Fast Algorithms for Convolutional Neural Networks”

Enrique GALVEZ February - July 2024

Winograd's method: example for 1D convolution

1D conv

[A[AJR[A] * [@[&a[&e] — [hxa+hxa+thxe | ixe + hxa + hxe
inputs weights outputs

Figure: FIR filter F(2,3) seen as a 1D convolution.

_ _ g +8 +8&

£ 6 (& (my+ my + m ' my = (fy — £)go, m2—(f1+f2)f7
81| = with

i L £ mo — m3 — my fl)go—g1+g2

—

~<
|

my = (fi — f)g, m=(h—
Figure: Winograd's algorithm for F(2, 3).

Winograd’'s method benefits:
» Default algorithm for F(m, r) requires m x r multiplications
> Winograd's algorithm requires m + r — 1 multiplications for F(m, r)
» Number of mutliplications is reduced at the cost of more additions
» Winograd's method can be generalized to 2D convolutions® (See Annex 3)

3A. Lavin and S. Gray 2015, "Fast Algorithms for Convolutional Neural Networks”

Enrique GALVEZ February - July 2024

Overview

3. Performance evaluation
@ Measurement platform
@ Single thread latency
o Latency compared to State-of-the-Art
@ Energy consumption compared to State-of-the-Art

Enrique GALVEZ February - July 2024

Measurement platform

Figure: NVIDIA Jetson AGX Orin.

Target SoC: NVIDIA Jetson AGX Orin
> 12x ARM Cortex-A78AE CPU, 64 GB RAM
» Caches: L1 (64kB) and L2 (256kB) in each PU ; L3 (2048kB) shared between 4 PUs

Power and energy consumption: precisely measured from power supply

Enrique GALVEZ February - July 2024

thread latency (big layers)

30000 Summed latency for 3x3 convolutions of popular networks Latency of convolutions depending on size
W OneDNN + OneDNN -~ size [1600
;;70000 . direct 1200 + direct i
E 60000 Py — im2row + im2row L 1400
[= wino 10001 * Wwino !
g 50000 1200
40000 ! g
3133 % .
30000 S 6o £ 800 ./ froood
£ IR, &
20000. > VA @
6000 £ 600 P 800 ¢
2 fov 2
5000 K] T © 4 1600
£ 4000 400 . ; 777777 4. L IS
= B R i -~ + + +
gaooo A 7 400
+
#2000 200 i st te 3 N 200
5 P O :
1000 erFTEEEY
0 - -
Biggest convolution cases

YOLOvV2 ResNet34

» wino is the best implementation on bigger layers
» Lowering-based implementations (implicit, im2row) are also good
> direct suffers from poor performance due to the irregularity of the computations

Enrique GALVEZ February - July 2024

Single thread latency (small layers)

Summed latency for 3x3 convolutions of popular networks

N w
a S
o S

N
o
S

Latency (ms)

= OneDNN
mmm direct
. im2row
= wino

118120126

DenseNet121

310

GooglLeNetvl

ResNet50v1.5

Latency (ms)
- N N
w o w

-
o

Latency of convolutions depending on size

OneDNN
direct
im2row
wino

P

A
JESR
4t +

Frpspateegizpiziciiiriiiiinally

+
s
7 . .
4 + .t
. b e
+ .
peprrrtrrt o lloest
:
Prilieas S

Smallest convolution cases

» direct and implicit are the best implementation on smaller layers

> im2row transform can be very expensive on small convolutions

» wino complexity reduction is not enough to compensate transformations cost

Enrique GALVEZ

February - July 2024

w

N

Problem size (MB)

-

Latency compared to State-of-the-A

—— direct
—— im2row
—— gemm
300 300 —— wino
~ 200 ~ 200
@ m
E E
2100 3100
c c
2 2
©
~ 50 3 50
40 40
30 30
20 20
10 10
2 4 6 8 10 12 2 4 6 8 10 12

Number of threads Number of threads

Figure: Latency of ResNet50v1.5 inference depending Figure: Latency of ResNet50v1.5 inference depending
on parallelism on parallelism (SotA)

» Similar problem studied in State-of-the-Art on the same target
» We achieve similar results, which validate our methodology

4S. Barrachina et al. 2023, " Performance—energy trade-offs of deep learning convolution algorithms on ARM
processors”

Enrique GALVEZ February - July 2024

Energy consumption compared to State-of-the-Art

—— wino —— wino
10.0 —— im2row 3.50 —— im2row
—— direct —— direct
—— onednn 3.00 —— gemm
S 80
? s 2.50
g 60 3 2.00
& 2
g §
g 1.50
z 4.0
1.00
2.0
0.50
0.0 0.00
2 4 6 8 10 12 2 4 6 8 10 12
Number of threads Number of threads
Figure: Energy consumption of ResNet50v1.5 Figure: Energy consumption of ResNet50v1.5
convolutions depending on parallelism convolutions depending on parallelism (SotA)

» Our measure "from the socket” provide a more relevant information about energy consumption
» SotA measure uses hardware counters only considering CPU and RAM consumption
» Our measure with hardware counters gave similar results to SotA (See Annex 4)

Enrique GALVEZ February - July 2024

Overview

4. Conclusion

Enrique GALVEZ February - July 2024

Conclusion

Several methods for forward convolutions
» direct: Straight-forward method, good on small layers
> im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
» implicit: Performs "on-the-fly" im2row to reduce memory overhead

> winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

Enrique GALVEZ February - July 2024

Conclusion

Several methods for forward convolutions
» direct: Straight-forward method, good on small layers
> im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
» implicit: Performs "on-the-fly" im2row to reduce memory overhead

> winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

Implementing CNN inference on SoCs
» On Jetson AGX Orin, latency and energy consumption are closely related
> Optimal latency is obtained by a compromise between implicit and winograd
> Measures "form the socket” lead to different conclusions than hardware counters

Enrique GALVEZ February - July 2024

Conclusion

Several methods for forward convolutions
» direct: Straight-forward method, good on small layers
> im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
» implicit: Performs "on-the-fly" im2row to reduce memory overhead

> winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

Implementing CNN inference on SoCs
» On Jetson AGX Orin, latency and energy consumption are closely related
> Optimal latency is obtained by a compromise between implicit and winograd
> Measures "form the socket” lead to different conclusions than hardware counters

Future work
» Continue the study on other architectures

» Explore cross-layer optimizations

Enrique GALVEZ February - July 2024

Appendix

Thank you for listening !

5. Appendix
@ Annex 1: Convolutions with padding, stride or dilation
@ Annex 2: Optimized direct convolutions
@ Annex 3: Winograd's method generalized to 2D-convolution
@ Annex 4: More performance results

Enrique GALVEZ

February - July 2024

Overview

5. Appendix
@ Annex 1: Convolutions with padding, stride or dilation
@ Annex 2: Optimized direct convolutions
@ Annex 3: Winograd's method generalized to 2D-convolution
@ Annex 4: More performance results

Enrique GALVEZ

February - July 2024

Annex 1: Convolutions with padding, stride or dilation

General formula:

IC—1 KH—1 KW—1
dst[mb, oc, oh, ow] = bias|oc| + Z Z Z src(mb, ic, ih, iw) - weights|oc, ic, kh, kw], (1)
ic=0 kh=0 kw=0

with:

()

ih := oh- SH + kh - (DH + 1) — PH,
iw :=ow - SW + kw - (DW + 1) — PW.

Parameters considered: (for simplicity)
> No bias
> Stride and dilation: SH =SW =1 and DH =DW =0
> Kernel sizez: KH=KW =3

Enrique GALVEZ February - July 2024

Annex 1: Convolutions with padding, stride or dilation

Formula: (ih and iw are locally defined)

IC—1 KH—1 KW—1
dst[mb, oc, oh, ow] = bias[oc] + Z Z Z src(mb, ic, ih, iw) - weights[oc, ic, kh, kw],
ic=0 kh=0 kw=0

sw swbw
”“ / T T ”‘ :' ¥ 4 T
PH - T 4 / I - PH - / e -
L W _ a
NRNZY, . iy i M
: A . A L 4 . !
[| \ L _ :
IHEL 7:[>0H: H o 7:[>0H:
- - ! e - |
LI M _ LI _ 1
' i \ v i i
LIS - < - - - > LI - !
\= - ow \= - \
[T R T R R O B R [T R T R R O B R <mmmmmmmmmm >
I G i > ow
PW w PW w
Figure: 2-strided 3 x 3 convolution. Figure: Dilated 3 x 3 convolution: DW = DH = 1.

February - July 2024

Enrique GALVEZ

18
19

Annex 2: Optimized direct convolutions

Algorithm 3: Optimized direct convolution.

Input tensor src: MB x IH x IW x IC
Weights tensor wei: [OC/OC| x [IC/ICy] x KH x KW x ICp x OCp
for mb=0 to MB do
for oc, =0 to [OC/0OC,| do
for ow,=0 to [OW/OW,] do
for oh=0 to OH do
for ic,=0 to [IC/IC,] do
for kh=0 to KH do
for kw=0 to KW do
ih < oh-SH + kh-(DH + 1) — PH
for ic=icp x ICp to (icy + 1) x IC, do
for ow=ow;, x OW, to (ow, + 1) x OW, do
iw < ow - SW + kw - (DW + 1) — PW
|s < src[mb, ih, iw, ic] |
for oc=oc, x OCp to (ocp + 1) x OCp do
w < weiloc, ic, kh, kw]
dsxw
dst[mb, oc, oh, ow] < dst[mb, oc, oh, ow] + d
Return dst: MB x OH x OW x OC

Enrique GALVEZ

Loop ordering:
» MB,OH,KH, KW, IC,OW,KOC

» Reuses src[mb, ih, iw, ic] accross OC

Cache blocking:
> OC, IC and OW are blocked
> wei tensor blocked, not src

> Allow better reuse of cached data

Parallelism:

» Loops from line 3 to 6 collapsed
and parallelized with OpenMp

» |C,KH, KW loops should be
executed with appropriate order

February - July 2024

Annex 3: Winograd's method generalized to 2D-convolution

Matricial expression:

1 0 -1 0 1 0 0
01 1 o0 11 1 11 1 0
BT = ; G=1% 2% %[, AT = ;
0 -1 1 0 i -1 1 01 -1 -1
01 0 -1 0 0 1

g= (go &1 gz)T, d= (ﬂ) i K f3)T, Y = result tensor.

1D Winograd’s method:
> Formula: Y = AT [(Gg) ® (BT d)]

» Number of multiplications for F(m, r): m+r—1

2D Winograd’s method:
> Formula: Y = AT[(GgGT) ® (B"dB)|A
» Number of multiplications for F(m x m, r x r): (m+r —1)?2

Enrique GALVEZ February - July 2024

Annex 3: Winograd's method generalized to 2D-convolution

Idea of the algorithm:
» Input /H and IW dimensions are divided in tiles of size m+r —1
> Corresponding output tiles are computed using 2D Winograd's method on F(m x m, r x r)
> Use 2D Winograd's formula on each tile: Y = AT[(GgG") ® (BT dB)|A

Algorithm 4: Winograd's convolution using F(m x m,r X r).

d: image tiles, g: weights of kernels, Y: output tiles

G,BT,AT: static transformation matrices

o? = (m+r —1)2 size of an input tile, P: number of tiles

// transform weights with additions

Ul:,:, oc,ic] + G - gloc,ic,:,:]- GT ; // U:axaxOCxIC
// transform input tensor with additions

V[, ic, b] + BT -dlic,b,:,] - B ; // ViaxaxICxP
// compute multiplications using a GEMM

MI¢,v,:,] < BLAS_GEMM(U[¢, v,], V[, v, 5, 1)) ; // M:axaxOCxP
// transform output with additions

Y[oc,b,:,:)] < AT -y[:,:,0c,b] - A; // Y :OCxPxmxm
Return Y

© O N O Bs W N =

= e
N = o

Enrique GALVEZ February - July 2024

Annex 4: More performance results

Average power consumption depending on convolution

= =
~ o © 1) ~

Average power consumption (W)

N

PO

ISEREEE

OneDNN
direct
im2row
wino

TE e

I L

u;i%giit;ii*;f;,

-

~-- size

1600

1400

1200

1000

800

600

400

o

Biggest convolution layers

Problem size (MB)

898 EEm OneDNN

800 mm direct
S . im2row
> - wino
£ 600
2
b

400 368 357

Energy ())

Summed energy for 3x3 convolutions of popular networks

YOLOv2 ResNet34

» Energy consumption is computed as: Energy = Power x Latency
» Power consumption is relatively stable depending on the implementation

» Energy consumption is thus determined by latency

Enrique GALVEZ

February - July 2024

Annex 4: More performance results

Energy consumption of 3x3 convolutions depending on parallelism

200 GFlop/s of 3x3 convolutions depending on parallelism
20 —— OneDNN —— OneDNN -
) —— direct 3504 — direct
3.0 ——— im2row —— im2row
—— wino 3007 — wino
S20 -~~~ MAX GFlop/s
& 250
: g
] 2200
o I
21.0 ©
g 150
z
100
0.5
50
0
2 4 6 8 10 12 2 4 6 8 10 12
Number of threads Number of threads

» With increasing number of threads, latency decreases faster than instantaneous power increases
> As a result, energy consumption decreases when the number of threads increases
> Because wino tiles have size 4 x 4, it has poor scalability for 12 threads

Enrique GALVEZ February - July 2024

Annex 4: More performance results

4.0 4.00
—— wino —— wino
35 —— im2row 3.50 —— im2row
—— direct —— direct
3.0 —— gemm 3.00 —— gemm
S
2.5 250
a =
c >
2.0 2 2.00
@ @
o <
@ i
E 1.5 1.50
<
1.0 ! 1.00
0.5 0.50
0.0 0.00
2 4 6 8 10 12 2 4 6 8 10 12
Number of threads Number of threads
Figure: Energy consumption of ResNet50v1.5 Figure: Energy consumption of ResNet50v1.5

convolutions depending on parallelism

> SotA measure uses hardware counters only considering CPU and RAM consumption

» Our measures with hardware counters gave similar results to SotA

Enrique GALVEZ

February - July 2024

convolutions depending on parallelism (SotA)

	Preliminaries
	Problem scope
	Working with tensors
	The convolution layer

	Convolution implementations
	Direct convolutions
	im2row based convolutions
	Winograd's method

	Performance evaluation
	Measurement platform
	Single thread latency
	Latency compared to State-of-the-Art
	Energy consumption compared to State-of-the-Art

	Conclusion
	Appendix
	Appendix
	Annex 1: Convolutions with padding, stride or dilation
	Annex 2: Optimized direct convolutions
	Annex 3: Winograd's method generalized to 2D-convolution
	Annex 4: More performance results

