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Context and motivations

Convolutionnal Neural Networks (CNNs)
> State-of-the-Art method for most image-based tasks (classification, object-detection...)
» Composed by a succession of layers: Convolution, pooling, activation...

> 3 steps: Design, learning and inference
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Context and motivations

Convolutionnal Neural Networks (CNNs)
> State-of-the-Art method for most image-based tasks (classification, object-detection...)
» Composed by a succession of layers: Convolution, pooling, activation...

> 3 steps: Design, learning and inference

Systems-on-Chip (SoCs)
» Good target for CNN inference

» Both latency and energy consumption should be optimized

Contribution
» Study of 4 convolution approaches: direct, im2row/im2col, winograd and implicit lowering
> Efficient implementation of these algorithms for CPU inference of usual CNNs

» Performance evaluation with respect to Latency and Energy consumption

Enrique GALVEZ February - July 2024



Overview

1. Preliminaries
@ Problem scope
o Working with tensors
o The convolution layer
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Problem scope

300

250

N
o
S

Latency for 1 inference (ms)
G
S

50

Temporal cost of convolutions in a network inference

=== convolutions W= other computations

Network

Figure: Proportion of time spent in convolutions for
common networks.

Convolution layers:
» Cost almost 70% of the total inference time

» Their implementation is critical for CNN
inference
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common networks.

Convolution layers:
» Cost almost 70% of the total inference time

» Their implementation is critical for CNN
inference

State-of-the-art convolutions:
> Main targets are GPUs/TPUs
» No open-source efficient CPU implementations

» No measures “from the socket” for energy
consumption, which is a relevant metric for SoCs
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Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

AxBxCxD:

Figure: Tensor with format A x B x C x D in memory.
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Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

AxBxCxD:

Figure: Tensor with format A x B x C x D in memory.

Image processing tensor: batch x channels x image_height x image_width

MB batch size KH, KW | kernel height, width || PH, PW | padding height, width
IC input channels oC output channels SH, SW | stride height, width
IH, IW | input height, width || OH, OW

output height, width || DH, DW | dilation height, width

Table: Notations for the main convolution parameters.

Input tensor: MB x IC x IH x IW Output tensor: MB x OC x OH x OW

Enrique GALVEZ

February - July 2024



The convolution layer

Formula: (Assuming DH = DW =0 and SH = SW =1)

IC—1 KH—1 KW—1
dst[mb, oc, oh, ow] = Z Z Z src(mb, ic, oh + kh — PH, ow + kw — PW)-weights|oc, ic, kh, kw].
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Overview

2. Convolution implementations
@ Direct convolutions
@ im2row based convolutions
@ Winograd's method
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Direct convolutions

Algorithm 1: Naive direct convolution.
1 Input tensor src: (MB x IC x IH x IW)

Naive algorithm:

2 Weights tensor wei: (OC x IC x KH x KW) > lterates through output tensor
3 |for mb=0 to MB do » Sums products of src and wei
for oc=0to OC do elements accross IC, KH, KW

4

5 |for oh=0 to OH do

6 |for ow=0 to OW do
7

8

9

d+ 0

for ic=0 to IC do
for kh=0 to KH do
10 for kw=0 to KW do

11 ih + oh-SH + kh- (DH + 1) — PH
12 iw < ow - SW + kw - (DW + 1) — PW
13 d < d + src[mb, ic, ih, iw] x weiloc, ic, kh, kw]

14 dst[mb, oc, oh, ow] <+ d
15 Return dst: (MB x OC x OH x OW)

1Zhang et al. 2018, " High Performance Zero-Memory Overhead Direct Convolutions”
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Direct convolutions
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Algorithm 1: Naive direct convolution.

Input tensor src: (MB x IC x IH x IW)
Weights tensor wei: (OC x IC x KH x KW)

for mb=0 to MB do
for oc=0 to OC do
for oh=0 to OH do
for ow=0 to OW do

d+ 0

for ic=0 to IC do
for kh=0 to KH do
for kw=0 to KW do
ih + oh-SH + kh- (DH + 1) — PH
iw < ow - SW + kw - (DW + 1) — PW
d < d + src[mb, ic, ih, iw] x weiloc, ic, kh, kw]
dst[mb, oc, oh, ow] <+ d

Return dst: (MB x OC x OH x OW)

Naive algorithm:

P lterates through output tensor

» Sums products of src and wei
elements accross IC, KH, KW

Optimized version!: (See Annex 2)

v

Change the order of the loops

» Reuse src[mb, ih, iw, ic] accross OC
» Add cache blocking

» Parallelize accross well-chosen loops
>

Use appropriate storage format for
src and wei

1Zhang et al. 2018, " High Performance Zero-Memory Overhead Direct Convolutions”
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im2row based convolutions

QA W N =

im2row? algorithm:
» src tensor is transformed in a matrix im_buf

» The convolution is computed as the matrix multiplication between M and wei

Main im2row benefits:
» GEMM is a very regular operation, allowing hardware and software optimizations
» High performance math libraries provides highly optimized implementations of GEMMs

Algorithm 2: im2row convolution.

Input tensor src: MB x IH x IW x IC

Weights tensor wei: (IC x KH x KW) x OC

im_buf < im2row(input) ; // im_buf : MB x OH x OW x (IC x KH x KW)
dst < BLAS_GEMM(im_buf, wer)

Return dst ; // dst: MB x OH x OW x OC

2Chellapilla et al. 2006, "High Performance Convolutional Neural Networks for Document Processing”
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im2row based convolutions

im2row transformation:
» Data required by each kernel is gathered in a row of the buffer
» Involves data duplication due to overlapping kernels
» Implicit lowering: reduces memory footprint by performing the im2row transformation on-the-fly
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Figure: Computing a convolution using im2row.
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Winograd's method: example for 1D convolution

1D conv

[h AR [ A ] X [&]&a || = [fixe + ixe + oxg | hxg + hxg + hxa
inputs weights outputs

Figure: FIR filter F(2,3) seen as a 1D convolution.

3A. Lavin and S. Gray 2015, "Fast Algorithms for Convolutional Neural Networks”
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Winograd's method: example for 1D convolution

1D conv

[h AR [ A ] X [&]&a || = [fixe + ixe + oxg | hxg + hxg + hxa
inputs weights outputs

Figure: FIR filter F(2,3) seen as a 1D convolution.
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Figure: Winograd's algorithm for F(2, 3).

3A. Lavin and S. Gray 2015, "Fast Algorithms for Convolutional Neural Networks”

Enrique GALVEZ February - July 2024



Winograd's method: example for 1D convolution

1D conv

[A[AJR[A] * [@[&a[&e] — [hxa+hxa+thxe | ixe + hxa + hxe
inputs weights outputs

Figure: FIR filter F(2,3) seen as a 1D convolution.
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Figure: Winograd's algorithm for F(2, 3).

Winograd’'s method benefits:
» Default algorithm for F(m, r) requires m x r multiplications
> Winograd's algorithm requires m + r — 1 multiplications for F(m, r)
» Number of mutliplications is reduced at the cost of more additions
» Winograd's method can be generalized to 2D convolutions® (See Annex 3)

3A. Lavin and S. Gray 2015, "Fast Algorithms for Convolutional Neural Networks”
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Overview

3. Performance evaluation
@ Measurement platform
@ Single thread latency
o Latency compared to State-of-the-Art
@ Energy consumption compared to State-of-the-Art
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Measurement platform

Figure: NVIDIA Jetson AGX Orin.

Target SoC: NVIDIA Jetson AGX Orin
> 12x ARM Cortex-A78AE CPU, 64 GB RAM
» Caches: L1 (64kB) and L2 (256kB) in each PU ; L3 (2048kB) shared between 4 PUs

Power and energy consumption: precisely measured from power supply
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thread latency (big layers)
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» wino is the best implementation on bigger layers
» Lowering-based implementations (implicit, im2row) are also good
> direct suffers from poor performance due to the irregularity of the computations
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Single thread latency (small layers)

Summed latency for 3x3 convolutions of popular networks
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Smallest convolution cases

» direct and implicit are the best implementation on smaller layers

> im2row transform can be very expensive on small convolutions

» wino complexity reduction is not enough to compensate transformations cost

Enrique GALVEZ
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Latency compared to State-of-the-A
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Figure: Latency of ResNet50v1.5 inference depending  Figure: Latency of ResNet50v1.5 inference depending
on parallelism on parallelism (SotA)

» Similar problem studied in State-of-the-Art on the same target
» We achieve similar results, which validate our methodology

4S. Barrachina et al. 2023, " Performance—energy trade-offs of deep learning convolution algorithms on ARM
processors”
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Energy consumption compared to State-of-the-Art
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Figure: Energy consumption of ResNet50v1.5 Figure: Energy consumption of ResNet50v1.5
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» Our measure "from the socket” provide a more relevant information about energy consumption
» SotA measure uses hardware counters only considering CPU and RAM consumption
» Our measure with hardware counters gave similar results to SotA (See Annex 4)
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Overview

4. Conclusion
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Conclusion

Several methods for forward convolutions
» direct: Straight-forward method, good on small layers
> im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
» implicit: Performs "on-the-fly" im2row to reduce memory overhead

> winograd: Reduces arithmetic complexity, use GEMMs, good on big layers
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Conclusion

Several methods for forward convolutions
» direct: Straight-forward method, good on small layers
> im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers
» implicit: Performs "on-the-fly" im2row to reduce memory overhead

> winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

Implementing CNN inference on SoCs
» On Jetson AGX Orin, latency and energy consumption are closely related
> Optimal latency is obtained by a compromise between implicit and winograd
> Measures "form the socket” lead to different conclusions than hardware counters

Future work
» Continue the study on other architectures

» Explore cross-layer optimizations
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Appendix

Thank you for listening !

5. Appendix
@ Annex 1: Convolutions with padding, stride or dilation
@ Annex 2: Optimized direct convolutions
@ Annex 3: Winograd's method generalized to 2D-convolution
@ Annex 4: More performance results
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Annex 1: Convolutions with padding, stride or dilation

General formula:

IC—1 KH—1 KW—1
dst[mb, oc, oh, ow] = bias|oc| + Z Z Z src(mb, ic, ih, iw) - weights|oc, ic, kh, kw], (1)
ic=0 kh=0 kw=0

with:

()

ih := oh- SH + kh - (DH + 1) — PH,
iw :=ow - SW + kw - (DW + 1) — PW.

Parameters considered: (for simplicity)
> No bias
> Stride and dilation: SH =SW =1 and DH =DW =0
> Kernel sizez: KH=KW =3

Enrique GALVEZ February - July 2024



Annex 1: Convolutions with padding, stride or dilation

Formula: (ih and iw are locally defined)

IC—1 KH—1 KW—1
dst[mb, oc, oh, ow] = bias[oc] + Z Z Z src(mb, ic, ih, iw) - weights[oc, ic, kh, kw],
ic=0 kh=0 kw=0

sw swbw
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Figure: 2-strided 3 x 3 convolution. Figure: Dilated 3 x 3 convolution: DW = DH = 1.
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Annex 2: Optimized direct convolutions

Algorithm 3: Optimized direct convolution.

Input tensor src: MB x IH x IW x IC
Weights tensor wei: [OC/OC| x [IC/ICy] x KH x KW x ICp x OCp
for mb=0 to MB do
for oc, =0 to [OC/0OC,| do
for ow,=0 to [OW/OW,] do
for oh=0 to OH do
for ic,=0 to [IC/IC,] do
for kh=0 to KH do
for kw=0 to KW do
ih < oh-SH + kh-(DH + 1) — PH
for ic=icp x ICp to (icy + 1) x IC, do
for ow=ow;, x OW, to (ow, + 1) x OW, do
iw < ow - SW + kw - (DW + 1) — PW
|s < src[mb, ih, iw, ic] |
for oc=oc, x OCp to (ocp + 1) x OCp do
w < weiloc, ic, kh, kw]
dsxw
dst[mb, oc, oh, ow] < dst[mb, oc, oh, ow] + d
Return dst: MB x OH x OW x OC

Enrique GALVEZ

Loop ordering:
» MB,OH,KH, KW, IC,OW,KOC

» Reuses src[mb, ih, iw, ic] accross OC

Cache blocking:
> OC, IC and OW are blocked
> wei tensor blocked, not src

> Allow better reuse of cached data

Parallelism:

» Loops from line 3 to 6 collapsed
and parallelized with OpenMp

» |C,KH, KW loops should be
executed with appropriate order
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Annex 3: Winograd's method generalized to 2D-convolution

Matricial expression:

1 0 -1 0 1 0 0
01 1 o0 11 1 11 1 0
BT = ; G=1% 2% %[, AT = ;
0 -1 1 0 i -1 1 01 -1 -1
01 0 -1 0 0 1

g= (go &1 gz)T, d= (ﬂ) i K f3)T, Y = result tensor.

1D Winograd’s method:
> Formula: Y = AT [(Gg) ® (BT d)]

» Number of multiplications for F(m, r): m+r—1

2D Winograd’s method:
> Formula: Y = AT[(GgGT) ® (B"dB)|A
» Number of multiplications for F(m x m, r x r): (m+r —1)?2
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Annex 3: Winograd's method generalized to 2D-convolution

Idea of the algorithm:
» Input /H and IW dimensions are divided in tiles of size m+r —1
> Corresponding output tiles are computed using 2D Winograd's method on F(m x m, r x r)
> Use 2D Winograd's formula on each tile: Y = AT[(GgG") ® (BT dB)|A

Algorithm 4: Winograd's convolution using F(m x m,r X r).

d: image tiles, g: weights of kernels, Y: output tiles

G,BT,AT: static transformation matrices

o? = (m+r —1)2 size of an input tile, P: number of tiles

// transform weights with additions

Ul:,:, oc,ic] + G - gloc,ic,:,:]- GT ; // U:axaxOCxIC
// transform input tensor with additions

V[, ic, b] + BT -dlic,b,:,] - B ; // ViaxaxICxP
// compute multiplications using a GEMM

MI¢,v,:, ] < BLAS_GEMM(U[¢, v, ], V[, v, 5, 1)) ; // M:axaxOCxP
// transform output with additions

Y[oc,b,:,:)] < AT -y[:,:,0c,b] - A; // Y :OCxPxmxm
Return Y

© O N O Bs W N =

= e
N = o
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Annex 4: More performance results

Average power consumption depending on convolution
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» Energy consumption is computed as: Energy = Power x Latency
» Power consumption is relatively stable depending on the implementation

» Energy consumption is thus determined by latency

Enrique GALVEZ
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Annex 4: More performance results

Energy consumption of 3x3 convolutions depending on parallelism

200 GFlop/s of 3x3 convolutions depending on parallelism
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» With increasing number of threads, latency decreases faster than instantaneous power increases
> As a result, energy consumption decreases when the number of threads increases
> Because wino tiles have size 4 x 4, it has poor scalability for 12 threads
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Annex 4: More performance results
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Figure: Energy consumption of ResNet50v1.5 Figure: Energy consumption of ResNet50v1.5

convolutions depending on parallelism

> SotA measure uses hardware counters only considering CPU and RAM consumption

» Our measures with hardware counters gave similar results to SotA

Enrique GALVEZ
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convolutions depending on parallelism (SotA)
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