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Context and motivations

Convolutionnal Neural Networks (CNNs)

▶ State-of-the-Art method for most image-based tasks (classification, object-detection...)

▶ Composed by a succession of layers: Convolution, pooling, activation...

▶ 3 steps: Design, learning and inference

Systems-on-Chip (SoCs)

▶ Good target for CNN inference

▶ Both latency and energy consumption should be optimized

Contribution

▶ Study of 4 convolution approaches: direct, im2row/im2col, winograd and implicit lowering

▶ Efficient implementation of these algorithms for CPU inference of usual CNNs

▶ Performance evaluation with respect to Latency and Energy consumption
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Problem scope

Figure: Proportion of time spent in convolutions for
common networks.

Convolution layers:

▶ Cost almost 70% of the total inference time

▶ Their implementation is critical for CNN
inference

State-of-the-art convolutions:

▶ Main targets are GPUs/TPUs

▶ No open-source efficient CPU implementations

▶ No measures “from the socket” for energy
consumption, which is a relevant metric for SoCs
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Working with tensors

Tensor: Multidimensional object representing data processed by a CNN

AxBxCxD: ...D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2

C0 C0C1 C1

A0

B0

Figure: Tensor with format A× B × C × D in memory.

Image processing tensor: batch × channels × image height × image width

MB batch size KH, KW kernel height, width PH, PW padding height, width
IC input channels OC output channels SH, SW stride height, width

IH, IW input height, width OH, OW output height, width DH, DW dilation height, width

Table: Notations for the main convolution parameters.

Input tensor: MB × IC × IH × IW Output tensor: MB × OC × OH × OW
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The convolution layer

Formula: (Assuming DH = DW = 0 and SH = SW = 1)

dst[mb, oc, oh, ow ] =
IC−1∑
ic=0

KH−1∑
kh=0

KW−1∑
kw=0

src(mb, ic , oh + kh − PH︸ ︷︷ ︸
ih

, ow + kw − PW︸ ︷︷ ︸
iw

)·weights[oc, ic , kh, kw ].

IW

IH

PW

PH

OH

OW

IC
OC

∗

inputs tensor weights tensor outputs tensor

OC

IC

IC

KW

KH
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Direct convolutions

Algorithm 1: Naive direct convolution.

1 Input tensor src : (MB × IC × IH × IW )
2 Weights tensor wei : (OC × IC × KH × KW )
3 for mb=0 to MB do
4 for oc=0 to OC do
5 for oh=0 to OH do
6 for ow=0 to OW do
7 d ← 0
8 for ic=0 to IC do
9 for kh=0 to KH do

10 for kw=0 to KW do
11 ih← oh · SH + kh · (DH + 1)− PH
12 iw ← ow · SW + kw · (DW + 1)− PW
13 d ← d + src[mb, ic , ih, iw ]× wei [oc, ic , kh, kw ]

14 dst[mb, oc, oh, ow ]← d

15 Return dst: (MB × OC × OH × OW )

Naive algorithm:

▶ Iterates through output tensor

▶ Sums products of src and wei
elements accross IC ,KH,KW

Optimized version1: (See Annex 2)

▶ Change the order of the loops

▶ Reuse src[mb, ih, iw , ic] accross OC

▶ Add cache blocking

▶ Parallelize accross well-chosen loops

▶ Use appropriate storage format for
src and wei

1Zhang et al. 2018, ”High Performance Zero-Memory Overhead Direct Convolutions”
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im2row based convolutions

im2row2 algorithm:

▶ src tensor is transformed in a matrix im buf

▶ The convolution is computed as the matrix multiplication between M and wei

Main im2row benefits:

▶ GEMM is a very regular operation, allowing hardware and software optimizations

▶ High performance math libraries provides highly optimized implementations of GEMMs

Algorithm 2: im2row convolution.

1 Input tensor src : MB × IH × IW × IC
2 Weights tensor wei : (IC × KH × KW )× OC
3 im buf ← im2row(input) ; // im buf : MB × OH × OW × (IC × KH × KW )
4 dst ← BLAS GEMM(im buf , wei)
5 Return dst ; // dst: MB × OH × OW × OC

2Chellapilla et al. 2006, ”High Performance Convolutional Neural Networks for Document Processing”
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im2row based convolutions

im2row transformation:
▶ Data required by each kernel is gathered in a row of the buffer
▶ Involves data duplication due to overlapping kernels
▶ Implicit lowering: reduces memory footprint by performing the im2row transformation on-the-fly

IW

IH
OH

OW

im2row

src tensor im2row buffer weights tensor output tensor

GEMM

K
H

x
K
W

x
IC

KH x KW x IC

M
B
x
IH

x
IW

OC

OCIC=1

Figure: Computing a convolution using im2row.

Enrique GALVEZ Efficient Convolutions on SoCs February - July 2024 10 / 19



Winograd’s method: example for 1D convolution

f0 f1 f2 f3 g0 g1 g2

1D conv

f0 × g0 + f1 × g1 + f2 × g2

inputs weights outputs

∗ f1 × g0 + f2 × g1 + f3 × g2

Figure: FIR filter F(2,3) seen as a 1D convolution.

Y =

(
f0 f1 f2
f1 f2 f3

)g0
g1
g2

 =

(
m1 +m2 +m3

m2 −m3 −m4

)
with

m1 = (f0 − f2)g0, m2 = (f1 + f2)
g0 + g1 + g2

2
,

m4 = (f1 − f3)g2, m3 = (f2 − f1)
g0 − g1 + g2

2
.

Figure: Winograd’s algorithm for F (2, 3).

Winograd’s method benefits:
▶ Default algorithm for F (m, r) requires m × r multiplications
▶ Winograd’s algorithm requires m + r − 1 multiplications for F (m, r)
▶ Number of mutliplications is reduced at the cost of more additions
▶ Winograd’s method can be generalized to 2D convolutions3 (See Annex 3)

3A. Lavin and S. Gray 2015, ”Fast Algorithms for Convolutional Neural Networks”
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Measurement platform

Figure: NVIDIA Jetson AGX Orin.

Target SoC: NVIDIA Jetson AGX Orin

▶ 12× ARM Cortex-A78AE CPU, 64 GB RAM

▶ Caches: L1 (64kB) and L2 (256kB) in each PU ; L3 (2048kB) shared between 4 PUs

Power and energy consumption: precisely measured from power supply
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Single thread latency (big layers)

▶ wino is the best implementation on bigger layers

▶ Lowering-based implementations (implicit, im2row) are also good

▶ direct suffers from poor performance due to the irregularity of the computations
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Single thread latency (small layers)

▶ direct and implicit are the best implementation on smaller layers

▶ im2row transform can be very expensive on small convolutions

▶ wino complexity reduction is not enough to compensate transformations cost
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Latency compared to State-of-the-Art

Figure: Latency of ResNet50v1.5 inference depending
on parallelism

Figure: Latency of ResNet50v1.5 inference depending
on parallelism (SotA)

▶ Similar problem studied in State-of-the-Art on the same target 4

▶ We achieve similar results, which validate our methodology

4S. Barrachina et al. 2023, ”Performance–energy trade-offs of deep learning convolution algorithms on ARM
processors”
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Energy consumption compared to State-of-the-Art

Figure: Energy consumption of ResNet50v1.5
convolutions depending on parallelism

Figure: Energy consumption of ResNet50v1.5
convolutions depending on parallelism (SotA)

▶ Our measure ”from the socket” provide a more relevant information about energy consumption
▶ SotA measure uses hardware counters only considering CPU and RAM consumption
▶ Our measure with hardware counters gave similar results to SotA (See Annex 4)

Enrique GALVEZ Efficient Convolutions on SoCs February - July 2024 17 / 19



Overview

1. Preliminaries
Problem scope
Working with tensors
The convolution layer

2. Convolution implementations
Direct convolutions
im2row based convolutions
Winograd’s method

3. Performance evaluation
Measurement platform
Single thread latency
Latency compared to State-of-the-Art
Energy consumption compared to State-of-the-Art

4. Conclusion

Enrique GALVEZ Efficient Convolutions on SoCs February - July 2024 18 / 19



Conclusion

Several methods for forward convolutions

▶ direct: Straight-forward method, good on small layers

▶ im2row/im2col: Uses a GEMM, big memory overhead, good on biggest layers

▶ implicit: Performs ”on-the-fly” im2row to reduce memory overhead

▶ winograd: Reduces arithmetic complexity, use GEMMs, good on big layers

Implementing CNN inference on SoCs

▶ On Jetson AGX Orin, latency and energy consumption are closely related

▶ Optimal latency is obtained by a compromise between implicit and winograd

▶ Measures ”form the socket” lead to different conclusions than hardware counters

Future work

▶ Continue the study on other architectures

▶ Explore cross-layer optimizations
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Appendix

Thank you for listening !

5. Appendix
Annex 1: Convolutions with padding, stride or dilation
Annex 2: Optimized direct convolutions
Annex 3: Winograd’s method generalized to 2D-convolution
Annex 4: More performance results
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Annex 1: Convolutions with padding, stride or dilation

General formula:

dst[mb, oc, oh, ow ] = bias[oc] +
IC−1∑
ic=0

KH−1∑
kh=0

KW−1∑
kw=0

src(mb, ic , ih, iw) · weights[oc, ic , kh, kw ], (1)

with: {
ih := oh · SH + kh · (DH + 1)− PH,

iw := ow · SW + kw · (DW + 1)− PW .
(2)

Parameters considered: (for simplicity)

▶ No bias

▶ Stride and dilation: SH = SW = 1 and DH = DW = 0

▶ Kernel size: KH = KW = 3
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Annex 1: Convolutions with padding, stride or dilation

Formula: (ih and iw are locally defined)

dst[mb, oc, oh, ow ] = bias[oc] +
IC−1∑
ic=0

KH−1∑
kh=0

KW−1∑
kw=0

src(mb, ic , ih, iw) · weights[oc, ic , kh, kw ],

IW

IH

PW

PH

OH

OW

SW

Figure: 2-strided 3× 3 convolution.

IW

IH

PW

PH

SW DW

OH

OW

Figure: Dilated 3× 3 convolution: DW = DH = 1.
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Annex 2: Optimized direct convolutions

Algorithm 3: Optimized direct convolution.

1 Input tensor src : MB × IH × IW × IC
2 Weights tensor wei : ⌈OC/OCb⌉ × ⌈IC/ICb⌉ × KH × KW × ICb × OCb

3 for mb=0 to MB do
4 for ocb = 0 to ⌈OC/OCb⌉ do
5 for owb=0 to ⌈OW /OWb⌉ do
6 for oh=0 to OH do
7 for icb=0 to ⌈IC/ICb⌉ do
8 for kh=0 to KH do
9 for kw=0 to KW do
10 ih← oh · SH + kh · (DH + 1)− PH
11 for ic=icb × ICb to (icb + 1)× ICb do
12 for ow=owb × OWb to (owb + 1)× OWb do
13 iw ← ow · SW + kw · (DW + 1)− PW
14 s ← src[mb, ih, iw , ic]
15 for oc=ocb × OCb to (ocb + 1)× OCb do
16 w ← wei [oc, ic , kh, kw ]
17 d ← s × w
18 dst[mb, oc, oh, ow ]← dst[mb, oc, oh, ow ] + d

19 Return dst: MB × OH × OW × OC

Loop ordering:

▶ MB,OH,KH,KW , IC ,OW ,OC

▶ Reuses src[mb, ih, iw , ic] accross OC

Cache blocking:

▶ OC , IC and OW are blocked

▶ wei tensor blocked, not src

▶ Allow better reuse of cached data

Parallelism:

▶ Loops from line 3 to 6 collapsed
and parallelized with OpenMp

▶ IC ,KH,KW loops should be
executed with appropriate order
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Annex 3: Winograd’s method generalized to 2D-convolution

Matricial expression:

BT =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =


1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 , AT =

(
1 1 1 0
0 1 −1 −1

)
,

g =
(
g0 g1 g2

)T
, d =

(
f0 f1 f2 f3

)T
, Y = result tensor.

1D Winograd’s method:

▶ Formula: Y = AT
[
(Gg)⊙ (BTd)

]
▶ Number of multiplications for F(m, r): m + r − 1

2D Winograd’s method:

▶ Formula: Y = AT
[
(GgGT )⊙ (BTdB)

]
A

▶ Number of multiplications for F(m ×m, r × r): (m + r − 1)2
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Annex 3: Winograd’s method generalized to 2D-convolution

Idea of the algorithm:
▶ Input IH and IW dimensions are divided in tiles of size m + r − 1
▶ Corresponding output tiles are computed using 2D Winograd’s method on F(m ×m, r × r)
▶ Use 2D Winograd’s formula on each tile: Y = AT

[
(GgGT )⊙ (BTdB)

]
A

Algorithm 4: Winograd’s convolution using F (m ×m, r × r).

1 d : image tiles, g : weights of kernels, Y : output tiles

2 G ,BT ,AT : static transformation matrices
3 α2 = (m + r − 1)2: size of an input tile, P: number of tiles
4 // transform weights with additions

5 U[:, :, oc, ic]← G · g [oc, ic , :, :] · GT ; // U : α× α× OC × IC
6 // transform input tensor with additions

7 V [:, :, ic , b]← BT · d [ic , b, :, :] · B ; // V : α× α× IC × P
8 // compute multiplications using a GEMM

9 M[ξ, ν, :, :]← BLAS GEMM(U[ξ, ν, :, :],V [ξ, ν, :, :]) ; // M : α× α× OC × P
10 // transform output with additions

11 Y [oc, b, :, :]← AT · y [:, :, oc, b] · A ; // Y : OC × P ×m ×m
12 Return Y
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Annex 4: More performance results

▶ Energy consumption is computed as: Energy = Power × Latency

▶ Power consumption is relatively stable depending on the implementation

▶ Energy consumption is thus determined by latency
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Annex 4: More performance results

▶ With increasing number of threads, latency decreases faster than instantaneous power increases

▶ As a result, energy consumption decreases when the number of threads increases

▶ Because wino tiles have size 4× 4, it has poor scalability for 12 threads
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Annex 4: More performance results

Figure: Energy consumption of ResNet50v1.5
convolutions depending on parallelism

Figure: Energy consumption of ResNet50v1.5
convolutions depending on parallelism (SotA)

▶ SotA measure uses hardware counters only considering CPU and RAM consumption

▶ Our measures with hardware counters gave similar results to SotA
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